
System i

Query Management Programming

Version 6 Release 1

SC41-5703-07

���

System i

Query Management Programming

Version 6 Release 1

SC41-5703-07

���

Note

Before using this information and the product it supports, be sure to read the information in

Appendix E, “Notices,” on page 241.

This edition applies to version 6, release 1, modification 0 of IBM i5/OS (product number 5761-SS1) and to all

subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all

reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About Query Management

Programming (SC41–5703) ix

Who should use the Query Management

Programming book ix

What query management does not do x

Prerequisite and related information x

How to send your comments x

Chapter 1. Introduction to query

management 1

Query management overview 1

i5/OS and the query management environment . 1

Collection use by query management 2

Naming conventions in query management 2

Naming conventions for query objects for query

management 2

Security and authorization in query management . . 5

Objects in query management 6

CL commands that support objects in query

management 6

Generic commands in query management . . . 7

Message descriptions in query management 7

Chapter 2. Query capability in query

management 9

Creating queries in query management 9

Example: Creating queries in query management 10

Query restrictions in query management . . . 10

Variable substitution in query management . . . 11

Variable prompting in query management . . . 11

Comments in query management 11

Line continuations in query management . . . 11

Using sort sequence in query management . . . 12

Chapter 3. Instance processing in

query management 13

Creating an instance in query management 13

Running a query in query management 13

Creating reports in query management 14

Importing a query or form object in query

management 15

Exporting a query or form object in query

management 15

Importing and exporting a procedure in query

management 16

Running a procedure in query management . . 16

Using the SAVE DATA AS command in query

management 17

Using SET GLOBAL and GET GLOBAL commands

in query management 18

Introducing activation groups in query management 19

Chapter 4. Commands in query

management 21

Specifying commands and keywords in query

management 21

Command parsing in query management . . . 21

How to read the syntax diagrams in query

management 22

COMMIT in query management 23

Authorization 23

Syntax 23

Parameter list 23

Examples: COMMIT in query management . . . 24

CONNECT in query management 24

Authorization 25

Syntax 25

Parameter list of CONNECT in query

management 25

Examples: CONNECT under RUW connection

management 25

Examples: CONNECT under DUW connection

management 26

DISCONNECT in query management 26

Authorization 26

Syntax 26

Parameter list 27

Examples: DISCONNECT in query management 27

ERASE in query management 27

Authorization 27

Syntax 28

Parameter list of ERASE in query management 28

Examples: ERASE in query management . . . 29

EXIT in query management 29

Authorization 29

Syntax 29

Parameter list 29

Examples: EXIT in query management 29

EXPORT in query management 29

Authorization 30

Syntax 31

Parameter list of EXPORT in query management 31

CCSID considerations of EXPORT in query

management 32

Examples: EXPORT in query management . . . 32

GET in query management 32

Authorization 32

Syntax 32

Parameter list 32

Examples: GET in query management 33

IMPORT in query management 33

Authorization 33

Syntax 34

Parameter list 34

Usage 36

CCSID considerations of IMPORT in query

management 37

Examples: IMPORT in query management . . . 37

PRINT in query management 37

Authorization 37

© Copyright IBM Corp. 1998, 2008 iii

Syntax 38

Parameter list 38

CCSID considerations of PRINT in query

management 40

Examples: PRINT in query management 40

Printer file use in query management 40

PRINT object formatting in query management 40

PRINT report formatting in query management 41

RELEASE in query management 41

Authorization 42

Syntax 42

Parameter list 42

Examples: RELEASE in query management . . . 42

RUN in query management 42

Authorization 43

Syntax 43

Parameter list 44

RUN considerations in query management . . . 44

Examples: RUN in query management 45

SAVE in query management 45

Authorization 45

Syntax 45

Parameter list 46

Examples: SAVE in query management 47

Null value considerations of SAVE in query

management 47

Referential constraint considerations of SAVE in

query management 47

Long column name considerations of SAVE in

query management 47

SET CONNECTION in query management 48

Authorization 48

Syntax 48

Parameter list 48

Examples: SET CONNECTION in query

management 49

SET GLOBAL in query management 49

Authorization 49

Syntax 49

Parameter list 49

Examples: SET GLOBAL in query management 50

Quotation marks in varname values when using

SET GLOBAL in query management 50

Programming considerations of SET GLOBAL in

query management 50

START in query management 51

Authorization 51

Syntax 51

Extended parameter list of START 52

Examples: START in query management 55

START query command procedure in query

management 55

CL commands in query management 57

ANZQRY (Analyze Query) in query management 57

CRTQMFORM (Create Query Management

Form) in query management 57

CRTQMQRY (Create Query Management Query)

in query management 57

DLTQMFORM (Delete Query Management Form)

in query management 57

DLTQMQRY (Delete Query Management Query)

in query management 57

RTVQMFORM (Retrieve Query Management

Form) in query management 57

RTVQMQRY (Retrieve Query Management

Query) in query management 58

STRQMPRC (Start Query Management

Procedure) 58

STRQMQRY (Start Query Management Query) 58

WRKQMFORM (Work with Query Management

Forms) 58

WRKQMQRY (Work with Query Management

Queries) 58

Chapter 5. Procedures in query

management 59

Creating procedures in query management 59

Example 1 of creating procedures in query

management 59

Example 2 of creating procedures in query

management 59

Steps for creating a procedure in query

management 60

User interaction in procedures in query

management 60

Procedure interaction in query management . . 61

Procedure objects in query management 61

Handling procedure errors in query management 62

Chapter 6. Report forms in query

management 63

How applications can use the form in query

management 63

Creating forms in query management 63

Formatting terminology in query management . 64

DBCS data in query management 65

Column Fields in query management 65

Data type for column in query management . . 66

Headings for column in query management . . 66

Usage for column in query management . . . 67

Indent for column in query management . . . 68

Width for column in query management . . . 69

Datatype for column in query management . . . 69

Edit codes for column in query management . . 69

Seq for column in query management 71

Runtime defaults for column in query

management 71

Page fields in query management 74

Blank lines before heading/footing for page

fields in query management 74

Blank lines after heading/footing for page fields

in query management 74

Heading text lines for page fields in query

management 74

Footing text lines for page fields in query

management 76

Final text fields in query management 77

New page for final text fields in query

management 77

iv System i: Query Management Programming

Put final summary at line for final text fields in

query management 77

Blank lines before text for final text fields in

query management 77

Line field for final text lines in query

management 77

Align field for final text fields in query

management 77

Final text lines for final text fields in query

management 78

Break fields in query management 78

New page for break/new page for footing for

break field in query management 78

Repeat column heading for break field in query

management 79

Blank lines before heading/footing for break field

in query management 79

Blank lines after heading/footing for break field

in query management 79

Put break summary at line for break field in

query management 79

Break heading text lines 79

Line value for break heading text lines in query

management 79

Align field for break heading text in query

management 80

Break heading text for break heading in query

management 80

Break footing text lines in query management . . . 80

Line value for break footing text lines in query

management 80

Align field for break footing text in query

management 80

Break footing text field for break footing in query

management 81

Options fields in query management 81

Detail line spacing for options field in query

management 81

Outlining for break columns for options field in

query management 81

Default break text for options field in query

management 81

Column wrapped lines kept on a page for

options field in query management 82

Column heading separators for options field in

query management 82

Break summary separators for options field in

query management 82

Final summary separators for options field in

query management 82

Chapter 7. Callable interface in query

management 83

Callable interface in query management description 84

Interface communications area (DSQCOMM) in

query management CI 85

Return codes in the query management CI . . . 86

Return variables in the query management CI . . 86

Command syntax extension in the query

management CI 86

Extended variable support in the query

management CI 87

Creating variables in the query management CI 87

Referencing variables in the query management

CI 87

Variable names in the query management CI . . 87

Variable values in the query management CI . . 88

Defined variables in the query management CI 88

Commitment control in the query management CI 92

Accessing CI with HLL programs in query

management 92

C language interface in the query management CI 92

Example DSQCOMMC of the C interface in the

query management CI 92

C variable support in the query management CI 94

Interface communications area (DSQCOMM) for

C in the query management CI 95

Return codes for C language interface in the

query management CI 96

Sample C language query CI program in query

management 97

COBOL language interface in the query

management CI 99

DSQCIB function syntax in the query

management CI 99

DSQCIB extended function syntax for COBOL in

the query management CI 99

Interface communications area (DSQCOMM) for

COBOL in the query management CI 100

Return codes for COBOL in the query

management CI 101

Example 1 of COBOL query CI program in

query management 101

Example 2 of COBOL query CI program in

query management 103

RPG language interface in the query management

CI 105

DSQCIR function syntax for RPG in the query

management CI 106

DSQCIR extended function syntax for RPG in

the query management CI 106

Interface communications area (DSQCOMMR)

for RPG in the query management CI 107

Return codes for RPG in the query management

CI 107

Example 1 of RPG language query CI program

in the query management CI 108

Example 2 of RPG language query CI program

in the query management CI 110

Using subprograms to access CI in query

management 112

START subprogram in the query management

CI 113

SETC subprogram in the query management CI 115

SETA subprogram in the query management CI 117

SETN subprogram in the query management CI 119

RUNQ subprogram in the query management

CI 121

RUNP subprogram in the query management CI 123

EXIT subprogram in the query management CI 123

Contents v

Chapter 8. Exported and imported

objects in query management 125

General object formats in query management . . . 125

Comments in externalized objects in query

management 125

External formats in query management 126

EXPORT and IMPORT file considerations in

query management 135

Ambiguous date and time literals in query

management 136

Variable-length fields in query management . . 137

Display format in query management 137

Encoded format in query management 137

Specific query object formats in query management 139

Externalized form format in query management 139

Externalized procedure and query formats in

query management 151

IMPORT QUERY considerations for sort sequence

in query management 151

Error handling and warning conditions in query

management 151

Failing conditions in query management . . . 152

EXPORT QUERY considerations for sort sequence

in query management 152

Externalized query description in query

management 152

Chapter 9. Distributed Relational

Database Architecture in query

management 155

Remote unit of work in query management DRDA 155

Distributed unit of work in query management

DRDA 155

Connection management statements in query

management DRDA 156

Connection management in query management

DRDA 156

Connection management method considerations

in query management DRDA 157

DRDA and activation groups in query

management 158

DRDA and activation group considerations in

query management 158

Default activation group in query management

DRDA 158

Nondefault activation group in query

management DRDA 159

Default and nondefault activation groups in

query management DRDA 159

Two nondefault activation groups in query

management DRDA 160

Command considerations with DRDA in query

management 160

SAVE DATA AS in query management DRDA 161

Other commands in query management DRDA 161

Commitment control in query management DRDA 161

ILE C considerations in query management

DRDA 161

Remote processing and long column names in

query management DRDA 162

Chapter 10. Coded character set

identifiers in query management . . . 163

Import CCSID processing in query management 163

Export CCSID processing in query management 163

Print CCSID processing in query management . . 163

Sort sequence CCSID processing in query

management 163

Other considerations in query management CCSID 164

Chapter 11. DB2 for i5/OS query

management considerations 165

Override considerations in query management . . 165

Tables and views in query management . . . 165

IMPORT and EXPORT source files in query

management 166

Query procedures in query management . . . 166

Miscellaneous tips and techniques in query

management 167

Printing an object in query management . . . 167

Changing STRQMQRY defaults for QRYDFN

use in query management 168

Displaying information about using QRYDFN

Objects in query management 168

Defining queries with global variables using

IBM Query for i5/OS 168

Using IBM Query for i5/OS to create a

QMFORM for an existing QMQRY in query

management 169

Displaying data from a single oversized record

in query management 169

Using query management or CL commands in

PDM options in query management 170

Creating a CL program for permanent

conversion of a QRYDFN object in query

management 170

Querying for field values in query management 171

Passing variable values to a query in query

management 172

Defining a column with no column heading in

query management 172

Using query management to format an

ISQL-developed query 173

Using ISQL select report processing with

referential constraints in query management . . 174

Using text insertion variables to stack captions

on final summaries in query management . . . 175

Using text in combination with tabular layout in

query management 175

Converting a multiple-level summary-only

QRYDFN in query management 176

Sorting and subsetting break-level summary

groups in query management 179

Adding SQL function in query management . . 179

Runtime environment in query management . . . 180

Limits to query management processing 181

Query management command 181

SQL query in query management 181

Externalized query in query management . . . 181

Externalized form in query management . . . 181

Instances in query management 181

vi System i: Query Management Programming

Global variables in query management 181

Procedure limits in query management 181

Chapter 12. Using IBM Query for i5/OS

definition information in query

management 183

QRYDFN conversion in query management . . . 184

Applying DB2 for i5/OS query management to

QRYDFN objects 184

QRYDFN conversion considerations in query

management 185

Report differences in query management . . . 185

Analyzing QRYDFN in query management . . 189

Inspecting the output in query management . . 190

Applying QRYDFN option guidelines in query

management 190

IBM Query for i5/OS and DB2 for i5/OS query

management differences 192

Creating DB2 for i5/OS query management objects

from QRYDFN objects 193

Using the STRQMQRY command instead of the

RUNQRY command in query management . . . 194

Conversion details in query management 197

Chapter 13. Control language

interface in query management 203

Creating QMQRY and QMFORM objects in query

management 203

Sample CL program for numeric variables in query

management 203

Creating QMQRY and QMFORM objects for

character variables in query management 205

Sample CL program for character variables in

query management 206

Appendix A. DBCS data in query

management 209

What is DBCS data in query management? . . . 209

Displayed and printed DBCS data in query

management 209

Data types used with DBCS data in query

management 210

Using DBCS data in DB2 for i5/OS query

management 211

Using DBCS data in input fields in query

management 211

Using DBCS data in queries in query

management 211

Using DBCS in the FORM in query

management 212

Saving DBCS data in query management . . . 214

Using DBCS global variables in DB2 for i5/OS

query management commands 215

Exporting DBCS data in query management . . 216

Importing DBCS data in query management . . 216

Printing DBCS reports in query management 216

Appendix B. Example of DB2 for i5/OS

query management interface 217

Producing a report in query management 217

Examples: Programs in query management . . . 218

Example: RPG program in query management 219

Example: COBOL program in query

management 220

Query and form source in query management 223

Query and form printed output in query

management 223

Appendix C. Use of quotation marks

and apostrophes when setting global

variables in query management . . . 227

Query global variable pool rules for question

marks and apostrophes in query management . . 227

CL command rules for question marks and

apostrophes in query management 227

Message prompt rules for question marks and

apostrophes in query management 228

High-level language programming rules for

question marks and apostrophes in query

management 228

Using a query procedure rules for question marks

and apostrophes in query management 228

Methods for simplification of variables in query

management 229

Appendix D. Examples of sort

sequence in query management . . . 231

Example of sort in query management 231

Example of record selection in query management 233

Example of report breaks in query management 235

Example of grouping in query management . . . 237

Break summary use in query management . . . 239

Appendix E. Notices 241

Programming interface information 242

Trademarks 243

Index 245

Contents vii

viii System i: Query Management Programming

About Query Management Programming (SC41–5703)

DB2® for i5/OS® query management, a function of the i5/OS operating system, provides a common

method of accessing data and reporting the results from a relational database across the different DB2

platforms.

Query management gives you the ability to design and format printed reports from processed queries. It

is a powerful and flexible reporting tool. (DB2 Query Manager provides an easy-to-use front end to the

query management function.) Queries can be included in programs written in RPG, COBOL, FORTRAN,

C, ILE C, or PL/I. These can be run from within CL programs. This gives the programmer flexibility in

setting up the environment.

Query management is included within the i5/OS licensed program. i5/OS commands allow:

v The import of a query object from a source file, or from an existing Query for i5/OS definition. This

means that a query object is created from a source file definition.

v The import of a query form object from a source file, or from an existing Query for i5/OS definition.

This means that a form object is created from the relevant source definition.

v The export of a query object to a source file.

v The export of a query form object to a source file.

v You to run a query from a command line.

v You to delete relevant objects from the system.

v You to analyze existing Query for i5/OS definitions before possible conversion.

Who should use the Query Management Programming book

Query management itself is not an end-user tool. The people who can use it most effectively are data

processing professionals. They have the ability to create queries that can be used within both CL and

high-level language programs.

Selected end users can be trained to use DB2 Query Manager to create their own queries. Queries created

and saved by DB2 Query Manager can be used by query management commands in batch mode.

However, generally, if end users need to create their own reports, then Query for i5/OS or Query

Manager would be a better choice.

If compatibility across several machines is necessary, then the query management function should be

considered.

This manual is intended to be used by:

v An application programmer familiar with the query management Common Programming Interface

(CPI) and the query interface.

v An application programmer familiar with the IBM® Query for i5/OS product and with using IBM

Query for i5/OS definitions.

v A system operator who has had formal i5/OS training, is familiar with operating the system, and is

familiar with query functions.

v A user who is performing problem analysis.

v IBM Programming Service personnel who are responsible for resolving non-customer problems with

system programs and this product.

© Copyright IBM Corp. 1998, 2008 ix

Query management performance must be reviewed if many lines of data are generated within a single

report. Query management is not recommended as an interactive transaction application, if the resulting

report is very large.

However, performance may be better if a query generates a report that has summary calculations on a

large file. For example, using the SUM, AVG, COUNT, MAX, or MIN calculations and only printing these

and not the detail lines.

What query management does not do

Query management does not pass back data to the program after accessing the database. If this type of

processing is required, then embedded SQL should be considered.

Query management does not provide an end-user interface for the definition of queries, for the changing

of queries, or for report formatting. Query Manager does this in a controlled manner.

Before you use this manual, you should be knowledgeable in the following:

v IBM DB2 Query Manager and SQL Development Kit for i5/OS licensed program

v i5/OS operation and functions

v IBM Query for i5/OS licensed program

Prerequisite and related information

Use the IBM i5/OS Information Center as your starting point for IBM System i™ technical information.

You can access the information center two ways:

v From the following Web site:

http://www.ibm.com/systems/i/infocenter/

v From the i5/OS Information Center CD, SK3T-4091. This CD-ROM is included with your new System i

hardware or i5/OS software upgrade order. You can also order the CD-ROM from the IBM

Publications Center:

http://www.ibm.com/shop/publications/order

The i5/OS Information Center contains new and updated system information, such as software and

hardware installation, Linux®, WebSphere®, Java™, high availability, database, logical partitions, CL

commands, and system application programming interfaces (APIs). In addition, it provides advisors and

finders to assist in planning, troubleshooting, and configuring your system hardware and software.

With every new hardware order, you receive the System i Access for Windows DVD, SK3T-4098. This DVD

provides for the installation of the IBM System i Access for Windows® licensed program. System i Access

Family offers client and server capabilities for connecting PCs to System i models.

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you

have any comments about this book or any other System i documentation, fill out the readers’ comment

form at the back of this book.

v If you prefer to send comments by mail, use the readers’ comment form with the address that is

printed on the back. If you are mailing a readers’ comment form from a country or region other than

the United States, you can give the form to the local IBM branch office or IBM representative for

postage-paid mailing.

v If you prefer to send comments by FAX, use either of the following numbers:

– United States, Canada, and Puerto Rico: 1-800-937-3430

x System i: Query Management Programming

– Other countries or regions: 1-507-253-5192
v If you prefer to send comments electronically, use one of these e-mail addresses:

– Comments on books:

 RCHCLERK@us.ibm.com
– Comments on the i5/OS Information Center:

 RCHINFOC@us.ibm.com

Be sure to include the following:

v The name of the book or i5/OS Information Center topic.

v The publication number of a book.

v The page number or topic of a book to which your comment applies.

About Query Management Programming (SC41–5703) xi

xii System i: Query Management Programming

Chapter 1. Introduction to query management

This chapter introduces the query management system (DB2 for i5/OS query management) and describes

some of its characteristics, specifications, and requirements, and its relationship to the IBM Query for

i5/OS programs and functions.

Query management overview

This manual covers the i5/OS implementation of query management Common Programming Interface

(CPI). This manual describes the functions and user interface for the DB2 for i5/OS query management

CPI.

Note: A working knowledge of query management CPI is recommended as a prerequisite to working

with this product. A knowledge of IBM Query for i5/OS and Structured Query Language (SQL) is

also beneficial.

The CPI allows a user to access information in a relational database and control how this data appears

when formatted into a report. The CPI provides services that fall into two major categories: querying and

report writing.

Application programs can use query management services through a program-to-program callable

interface using DB2 for i5/OS query management objects. The query management objects are created

only through the CPI using source files that contain externalized query, procedure, and form definitions.

The source files can be built using an editor, built by an application program, transferred from another

system (from which they were exported), or created through conversion of query definition (*QRYDFN)

objects that were created using IBM Query for i5/OS.

Applications that use query management have the following advantages:

v Reduced requirements for error handling and interpretation. The application might not need to check

for SQL error codes.

v Use of queries, procedures, and forms that are defined and stored outside of the application code. You

can update your application by changing query management objects without having to change or

recompile your application program.

v No need to understand and handle relational database manager protocols. The application can pass a

few simple commands to allow access to data in an exported format.

The query management commands can be issued by processing a statement in a procedure or by running

a program that uses the callable interface.

i5/OS and the query management environment

Query management objects are created and maintained as i5/OS system objects. Table 1 shows the

relationships between system terms and the query management environment terms.

 Table 1. i5/OS and query management terminology

i5/OS term DB2 for i5/OS query management use

Library. A library groups related objects, allowing the

user to find the objects by name.

Collection. A collection consists of a library, a journal, a

journal receiver, a data dictionary, and an SQL catalog. A

collection groups related objects, allowing the user to

find the objects by name.

Physical file. A collected group of records. Table. A collection of columns and rows.

© Copyright IBM Corp. 1998, 2008 1

Table 1. i5/OS and query management terminology (continued)

i5/OS term DB2 for i5/OS query management use

Record. A collection of fields. Row. The horizontal part of a table that contains a serial

collection of columns.

Field. One or more characters of related information of

one data type.

Column. The vertical part of a table of one data type.

Logical file. A subset of fields and records of one or

more physical files.

View. A subset of columns and rows of one or more

tables.

User profile. A name that identifies a user and

designates a set of privileges on the i5/OS operating

system.

Authorization ID. A character string of not more than 10

bytes that identifies a user.

Collection use by query management

Query management treats all objects as belonging to a collection. The following list describes query

management collection conventions:

v Query management objects (queries, forms, and procedures) are not part of a collection. As shown in

Table 1 on page 1, a collection on the system is a library. A query management object can be part of a

library, but if the library is a collection, the collection catalogs and journals have no entry for the query

management object.

v Tables manipulated by the query management commands (ERASE and SAVE) are treated as SQL

tables. The DB2 for i5/OS SQL rules that are applicable to the SQL table manipulation statements are

in effect when you manipulate tables through query management commands. The following table

shows the query management commands and their corresponding SQL statements.

 Query management commands SQL statements

ERASE Drop Table

SAVE (to new table) Create Table and Insert

SAVE REPLACE Delete and Insert

SAVE APPEND Insert

Naming conventions in query management

The following rules apply when you create a table or view or name an object that you want to save in

the database.

Naming conventions for query objects for query management

Query objects can be specified on commands using either SQL names or system names. The naming

convention to use is specified in the query command procedure on the START command or the Start

Query Management Query (STRQMQRY) CL command. Query management uses SQL naming as the

default. The naming convention specified for a query instance is used throughout the entire instance and

applies only to that instance. It cannot be changed after the START command has been issued for the

query instance.

Note: These naming conventions only apply to the query object specified on a command. System naming

conventions always apply on the file name specified on the IMPORT and EXPORT commands.

System naming in query management

When a query instance uses system names, the following rules apply for a query object name specified in

a query command:

2 System i: Query Management Programming

v Query objects may be specified using delimited names. A delimited name is a character string with the

following characteristics:

– One to eight characters long

– Beginning and ending with quotation marks ("MYFORM")

– Contains any character except:

- A blank

- An asterisk (*)

- A question mark (?)

- An apostrophe (')

- Quotation marks (")

- The numbers hex 00 through 3F, or hex FF

A delimited name may be qualified, but the qualifier and the name must be surrounded by quotation

marks separately from each other ("MYLIB"/"MYFORM").

v Query objects may be specified using simple names. Simple names are character strings up to 10

characters long and must begin with an alphabetic character (A through Z, $, #, or @). Periods and

blanks are not allowed in simple names.

v A query command file name can be qualified by a library name up to 10 characters long. A slash (/)

must separate the qualifying library name and the file name. For example, MYLIB/FILE1 (file FILE1 in

library MYLIB) is a qualified name. The rules applying to i5/OS names in quotation marks and simple

names apply to the library name used as the qualifier.

v Objects of the same type that are stored in the same library must have different names (you cannot

have two files named TEST, for example). Queries and forms are different i5/OS object types; therefore,

a query and form may have the same name. Names for procedures, tables, and views must be different

because they are all i5/OS files. A procedure, table, or view can have the same name as a query object

or form object, but not another procedure, table, or view.

v Names for queries, forms and procedures can use reserved words (like FORM, QUERY, COUNT, NULL

and so on), though naming something with an SQL keyword is not recommended.

v If a query management query, form, or procedure specified in a query command is not qualified, i5/OS

search conventions are followed. If an unqualified query management object name is specified, the

query management function searches the library list (*LIBL) for the query management object. If a

query management object is being created, query management places the object in the current library

(*CURLIB).

v If an unqualified table or view name is specified on a query command, see the SQL reference for the

search conventions followed.

v If an unqualified, distinct type, function, or procedure is referred to in a query management query, it is

resolved using the CURRENT PATH special register. If the query management query is run with the

STRQMQRY CL command and is the first SQL statement issued in the activation group, the default

CURRENT PATH to be used is *LIBL if system naming is used. If SQL naming is used, the default

CURRENT PATH to be used is QSYS, QSYS2, user-name. In most cases, when subsequent STRQMQRY

CL commands are run, the CURRENT PATH to be used for each STRQMQRY is the default CURRENT

PATH, and its value depends on the naming mode specified on the CL command. In some instances, if

an SQL program was run previously, distinct types, functions, or procedures that are not referred to in

a query management query are resolved using the CURRENT PATH that was set in the SQL program.

For more information about system naming and i5/OS search conventions, see the Control language topic

in the information center.

SQL naming in query management

When the query instance is using SQL names, the following rules apply for a query object name specified

in a query command. These rules are similar to the i5/OS object naming conventions.

v Query objects may be specified using delimited names. A delimited name is a character string with the

following characteristics:

Naming Conventions

Chapter 1. Introduction to query management 3

– One to eight characters long

– Beginning and ending with quotation marks ("MYFORM")

– Contains any character except

- A blank

- An asterisk (*)

- A question mark (?)

- An apostrophe (')

- Quotation marks (")

- The numbers hex 00 through 3F, or hex FF

A delimited name may be qualified, but the qualifier and the name must be surrounded by quotation

marks separately from each other ("MYLIB"."MYFORM").

v Query objects may be specified using simple names. Simple names are character strings up to 10

characters long and must begin with an alphabetic character (A through Z, $, #, or @). Periods and

blanks are not allowed in simple names.

v A name can be qualified by another name (usually a user or an authorization identification) of up to 10

single-byte characters with a period (.) separating the qualifier and the name. For example, Q.QUERY1

(the query in the Q collection) is a qualified name. Query management uses the DB2 for i5/OS SQL

conventions of treating the authorization ID as a user profile. If SQL naming conventions apply, query

management attempts to find the object in the library with the same name as the authorization ID. The

rules that apply to delimited and simple names also apply to the library name used as the qualifier.

v Objects of the same type that are stored in the same library must have different names (you cannot

have two files named TEST, for example). Queries and forms are different i5/OS object types; therefore,

a query and form may have the same name. Names for procedures, tables, and views must be different

because they are all i5/OS files. A procedure, table, or view can have the same name as a query object

or form object, but not another procedure, table, or view.

v If an unqualified query management object name is specified, the query management function searches

the library with the same name as the current user profile for the query object. If the query object is

being created, query management places the object in the library with the same name as the current

user profile. These are the same conventions followed by the DB2 Query Manager and SQL

Development Kit licensed program.

Naming conventions for i5/OS objects in query management: The filename specified on the IMPORT

and EXPORT query commands will follow the i5/OS naming conventions for a source physical file.

v Query objects may be specified using delimited names. A delimited name is a character string with the

following characteristics:

– One to eight characters long

– Beginning and ending with quotation marks ("MYLIB")

– Contains any character except

- A blank

- An asterisk (*)

- A question mark (?)

- An apostrophe (')

- Quotation marks (")

- The numbers hex 00 through 3F, or hex FF

A delimited name may be qualified, but the qualifier and the name must be surrounded by quotation

marks separately from each other ("MYLIB"/"MYFORM").

v Query objects may be specified using simple names. Simple names are character strings up to 10

characters long and must begin with an alphabetic character (A through Z, $, #, or @). Periods and

blanks are not allowed in simple names.

Naming Conventions

4 System i: Query Management Programming

v i5/OS rules also apply when the filename is specified with a qualified name. A filename in a query

command can be qualified by a library name of up to 10 characters with a slash (/) separating the

qualifier and the name. For example, MYLIB/FILE1 (a file in library MYLIB) is a qualified name.

v If a filename specified in a query command is not qualified, query management searches the library list

(*LIBL) for a source file named filename. If the file is created, query management places the file in the

current library (*CURLIB).

v If the physical file is a multiple member source file, the following rules apply for specifying the

member:

– If no member name is specified, the member name used will default to *FIRST on the IMPORT and

EXPORT commands.

– Query management processes a specified member in a physical file if a member name is given as

part of the file name. The member name must follow the file name and be delimited by parenthesis

with no intervening blanks. For example, the member MEMBER1 in the file FILE1 can be specified

by entering a file name as follows:

FILE1(MEMBER1)

Naming conventions using variable names in query management: See “Extended variable support in

the query management CI” on page 87 for the rules that apply when you use variables in SQL queries

across the callable interface. i5/OS specific rules are:

v Variable names must be preceded by an ampersand (&). The ampersand delimits the beginning of a

variable name and is not included as one of the 18 characters allowed for the name. You cannot have

more than one ampersand in a variable name, since each ampersand delimits the beginning of a

distinct variable name.

v User-defined variables may not start with DSQ. An error is generated if an attempt is made to set a

variable that starts with DSQ.

v Variable names within query management are case-sensitive. Therefore, the variable i_owe_you, is not

the same as the variable I_OWE_YOU.

The following are valid variable names:

 In an SQL Query In the GET/SET Command

 -------------------- -------------------------

 &I_owe_you I_owe_you

 &MYVAR123 MYVAR123

 &THIS_IS_A_BIG_NAME THIS_IS_A_BIG_NAME

Naming conventions for other query names in query management: The naming convention that is

used by the query instance also applies to the SQL statements in any SQL query that is run during the

instance. If system names are used in the query instance, system names apply to the SQL query. See the

SQL reference for a description of the SQL and system naming conventions as followed by DB2 for i5/OS

SQL.

Security and authorization in query management

Query management uses the i5/OS security and authorization model. See Security reference for

information about i5/OS security concepts.

There are special security authorization considerations for query objects, i5/OS objects, and SQL:

v Query objects: When query objects are created through a query command, there are various ways to

specify the type of public authority for the query object that you want to give to other users. The types

of authority are specified using the DSQOAUTH keyword in the query command procedure or on the

START command; see “START in query management” on page 51.

v i5/OS objects: Query management uses the same public authority for creating a nonquery object, such

as the source physical file on an EXPORT, as it does when creating query objects.

Naming Conventions

Chapter 1. Introduction to query management 5

v SQL: See the SQL reference for information for object authority as it applies to the SQL statement

within an SQL query.

v Adopted Authority: The user, while running a program, acquires the program owner’s authority and

thus acquires authority to the files associated with the program.

Objects in query management

Support for query management requires the definition of two object types: the query management query

object and the query management form object. The i5/OS object type for the query management query

object is QMQRY. The i5/OS object type for the query management form object is QMFORM. The query

management procedure is stored as a single member source physical file.

CL commands that support objects in query management

The following query management CL commands support the QMQRY objects:

CRTQMQRY

Create Query Management Query

DLTQMQRY

Delete Query Management Query

RTVQMQRY

Retrieve Query Management Query

STRQMQRY

Start Query Management Query

WRKQMQRY

Work with Query Management Query

 The WRKQMQRY CL command supports the following CL commands:

CHGOBJD

Change Object Description

DLTQMQRY

Delete Query Management Query

STRQMQRY

Start Query Management Query

The following query management CL commands support the QMFORM objects:

CRTQMFORM

Create Query Management Form

DLTQMFORM

Delete Query Management Form

RTVQMFORM

Retrieve Query Management Form

WRKQMFORM

Work with Query Management Form

 The WRKQMFORM CL command supports the following CL commands:

CHGOBJD

Change Object Description

DLTQMFORM

Delete Query Management Form

Naming Conventions

6 System i: Query Management Programming

Generic commands in query management

You can run the following generic commands against the QMQRY and QMFORM objects:

CHKOBJ

Check Object

CHGOBJD

Change Object Description

CHGOBJOWN

Change Object Authority

CRTDUPOBJ

Create Duplicate Object

DSPOBJAUT

Display Object Authority

DSPOBJD

Display Object Description

EDTOBJAUT

Edit Object Authority

GRTOBJAUT

Grant Object Authority

MOVOBJ

Move Object

RNMOBJ

Rename Object

RSTOBJ

Restore Object

RVKOBJAUT

Revoke Object Authority

SAVCHGOBJ

Save Changed Object

SAVOBJ

Save Object

WRKOBJ

Work with Object

Message descriptions in query management

The following error messages are possible when working with query management commands and

functions:

FAILURE

The query management command issued failed, and processing stops. A message is returned to

the display station that details the reason for the command failure and gives some possible

solutions for correcting the error.

SEVERE

A severe error occurred when query management attempted to process the command issued, and

all processing stops. A message is returned to the display station that provides the reason for the

error and gives some possible solutions for correcting the error.

Naming Conventions

Chapter 1. Introduction to query management 7

SUCCESS

The query management command issued processed successfully, and data is available for use.

WARNING

Query management encountered an error in the command or procedure issued, but processing

continues. The error is ignored, or system defaults are used to correct the error. Check the error

messages for an explanation of the warning and what, if anything, you can do to correct the

error.

Naming Conventions

8 System i: Query Management Programming

Chapter 2. Query capability in query management

DB2 for i5/OS query management supports queries against relational data using SQL. When a query is

run remotely to an i5/OS operating system, the local sort sequence table is used. When a query is run

remotely to a system other than the i5/OS, a sort sequence table is not used.

The basic statements, SELECT expressions, data definition, and authorization statements defined in the

SQL reference are specifically supported. By using these SQL features in a query, your application can

perform table definitions, data access authorizations, database queries and data insertions, updates, and

deletions. The results of a query can be displayed or printed as a report.

Query management supports prompted queries and SQL queries. For more information about prompted

queries, see Query Manager Use.

Queries can be created, named, stored, and retrieved. Stored queries can be shared among multiple users

and applications. The queries used by your application can be defined and stored at application

development time, or they can be created by your application and used by query management at

application run time.

Stored queries allow flexibility in two ways. First, you can change a query and store it independently

from your application program. Second, queries can contain variables, and the values assigned to the

variables can be set prior to, or in conjunction with your application. Both of these capabilities allow data

query parameters to be changed without rewriting or recompiling your application.

Creating queries in query management

In i5/OS, a query is a QMQRY object. A query can be created using:

v The Create Management Query (CRTQMQRY) CL command

v An IMPORT QUERY command through the Common Programming Interface of query management

v The create query function in DB2 Query Manager

A query object in the query management function is stored as an i5/OS *QMQRY object. The externalized

query source member must contain a text string that contains an SQL statement, which can optionally

contain variables.

Variables can appear in any part of the query. They can represent anything that can be written into a

query, such as:

v Column names

v Search conditions

v Subselects

v Specific values

v Multiple clauses

v Partial clauses

It is also possible to create a query that contains 1 or more variables.

The following is an example of a query:

-- This query lists the name, years of employment, and salary

-- for employees in a department. The department (DEPTNUM)

-- is a variable and should be set before the query is run.

H QM4 05 Q 01 E V W E R 01 03 92/10/24 11:07

© Copyright IBM Corp. 1998, 2008 9

V 1001 050 Department Query

V 5001 011 QSYS/QASCII

V 5002 003 ENV

 SELECT NAME, YEARS, SALARY -- names the columns used

 FROM Q.STAFF -- names the table used

 WHERE DEPT=&DEPTNUM -- variable selection condition

Note: The comments, H records, and V records are optional; only the SQL statement is required.

Query management strips the comments and performs variable substitution before the query is passed to

the database manager for processing.

Example: Creating queries in query management

You can create a query in query management by importing an externalized query source file member to

create a query management query object.

1. To create a source file containing a member use the following command:

 CRTSRCPF FILE(MYLIB1/QQRYSRC) MBR(QUERY1)

2. Edit the source file member QUERY1 and add the following kind of information:

H QM4 05 Q 01 E V W E R 01 03 92/10/24 11:07

V 1001 050 Department Query

V 5001 011 QSYS/QASCII

V 5002 003 ENV

 SELECT NAME, YEARS, SALARY -- names the columns used

 FROM Q.STAFF -- names the table used

 WHERE DEPT=&DEPTNUM -- variable selection condition

3. Save the source file member QUERY1.

4. To create the query object in MYLIB1, use the Create Query Management Query (CRTQMQRY)

command to import the source file member you just created. At an i5/OS command line, type:

CRTQMQRY QMQRY(MYLIB1/QUERY1)

SRCFILE(MYLIB1/QQRYSRC) SRCMBR(QUERY1)

and press Enter.

Query management strips the comments and performs variable substitution before the query is passed to

the database manager for processing.

Query restrictions in query management

The following restrictions apply to queries that are handled by query management:

v A query is limited by the size of the source file.

v A single line of the query cannot exceed 79 bytes.

v Substitution variable values can be up to 55 characters long.

v Substitution variable names cannot exceed 30 characters.

v The externalized query source file should only contain an SQL statement. An externalized prompted

query can be successfully imported to query management but would not run.

v Comments must be preceded by a double hyphen (--). Everything between the double hyphen and the

end of the line is considered to be part of the comment.

v The total query cannot exceed 32767 bytes after comments and blanks are removed and variable

substitution is made.

v An externalized query can contain an H record with a comment V record immediately following. The

comment may be used as the text description when the object is imported.

v An externalized query can contain a sort sequence value, a language ID, or both. If these are present,

they must immediately follow the H record or comment record.

10 System i: Query Management Programming

Variable substitution in query management

The following rules apply to variable substitution in query management queries:

v Variable substitution is not done if the variable appears within a comment.

v Variable substitution is not done if the variable appears within a constant or a delimited name.

v A variable within an SQL query is defined as a string of characters that begins with an ampersand (&)

and ends with any character that is not a valid variable name character.

v Query management does not substitute extra blanks between variables. Therefore, you can use variable

substitution as a concatenation device. As an example, the following query management SET

commands are processed through the callable interface or within a procedure:

SET GLOBAL (library=’MYLIB’

SET GLOBAL (table=’MYTABLE’

SET GLOBAL (dol=10

SET GLOBAL (cnts=50

Then running the following SQL query processes the ending SQL statement:

SELECT * FROM &library.&table

 WHERE PRICE = &dol.&cnts

SELECT * FROM MYLIB.MYTABLE

 WHERE PRICE = 10.50

Variable prompting in query management

Query management sends a message to your display, prompting you for the value to be used. This

prompting happens if your job is running interactively and the variable specified in a query is not set in

the global variable pool.

A valid value may be entered for the variable, and then the query is processed. If you press Enter

without typing a value, or you press F3 (Exit) or F12 (Cancel), the query fails with an error. You can also

replace the variable name with a single blank by entering the special value *BLANK.

If your job runs in batch mode and the variable specified in a query is not set in the global variable pool,

the query fails. The variable is not substituted.

Any attempt to run a query with an incorrect variable name causes the query to fail with an error. For

example, if the variable name is too long, or if the first character after the & is not a letter, the query will

fail.

Comments in query management

Comments in query management queries are handled in the following ways:

v Comments are stripped from the SQL query prior to variable substitution. Comment delimiters within

substituted variables are not stripped and may result in SQL errors or unpredictable results.

v Comment delimiters within strings enclosed in quotation marks are not treated as comments. These

strings may either be delimited names, which are delimited by quotation marks (“”), or constants,

which are delimited by apostrophes (’’).

v You cannot use intervening blanks between the two hyphens (--) that make up the comment delimiters.

Line continuations in query management

The following rules govern the use of line continuations in query management queries:

v Some SQL clauses may span multiple lines of the SQL query. SQL does not support a line continuation

character. Therefore, for readability, start a new line at a point in the SQL statement where a blank

could be inserted. If a clause spans multiple lines, the clause may be split as long as the last character

in the previous line is part of the clause and the first character in the next line is part of the clause

with no extra blanks. The last character in a clause to be continued on the next line must be in column

79.

Chapter 2. Query capability in query management 11

v Constants and delimited names may span multiple lines.

Note: Mixed single-byte character set (SBCS) and double-byte character set (DBCS) character strings

may not successfully be split between multiple lines. In this case, use SQL concatenation.

Using sort sequence in query management

When the Common Programming Interface of query management is used to run a *QMQRY object that

was defined with a sort sequence table, the sort sequence table associated with the object is used to run

the query. The sort sequence table is also used for formatting all displayed and printed reports produced

from the resulting data.

If you connect to a remote i5/OS operating system that supports sort sequence, the sort sequence table

associated with the object is used for SQL processing.

If you run the RUN QUERY command to convert and run a Query for i5/OS *QRYDFN object, the query

management function uses the *HEX sort sequence table if the object is defined to use option 1, 2, or 3 in

Query for i5/OS. Select the Collating Sequence display. For information about the Query for i5/OS

product, see Query for i5/OS. If the *QRYDFN object is defined to use option 4 or 5, query management

uses the same sort sequence that is used to run the query and format the report.

12 System i: Query Management Programming

Chapter 3. Instance processing in query management

A query management instance is a progression of steps that results in creating a displayed or printed

report from the data found in a database file or IBM Query for i5/OS definition. Query management puts

the data specified into a result set (the active information resulting from running a query) called a query

management query (QMQRY) object, which is organized by the query management form (QMFORM)

object. By changing the form, you can use the same query management query to create multiple reports

that are organized according to your needs for a particular situation. This chapter describes how to

create, change, and convert a query management instance that creates a report arranged to your needs.

Creating an instance in query management

Obtain access to the query function of query management by beginning with a control language (CL)

command or a user application. After you access the query function, you can use query management

commands to direct query management in creating an instance. An instance is a result set that contains

the data collected from the database file and the global variable pool that contains the DSQ variables

used to define the query.

Using the query management instance created by the commands issued, build a printed or displayed

report by creating or changing the form in a way that gives you the needed information. Figure 1

illustrates how a query management instance is created.

 Exit the query management instance using the same procedure and the EXIT command. This destroys the

instance.

Running a query in query management

Use one of the following methods to run a query management query:

v Specify the RUN QUERY command in a procedure (via STRQMPRC).

v Issue the Start Query Management Query (STRQMQRY) CL command.

v Run the query from a user application.

By using a Structured Query Language (SQL) SELECT statement, query management accesses an i5/OS

database file and puts the information requested in the QMQRY into the result set contained in the

instance.

The result set created by running the query remains in existence until another query is processed or the

associated instance is ended by the EXIT command. A different result set is created for each query

management instance.

Figure 1. Creating a query management instance

© Copyright IBM Corp. 1998, 2008 13

Note: The result set is only created if the query is a SELECT statement.

Figure 2 illustrates how a query is run using query management.

Global variable substitution in query management

If you run a query with global variable substitution specified, query management processes the request in

the same manner as described previously, except the global variable pool defined when the instance was

created is searched to resolve global variables. If the variable specified in the query is not set in the global

variable pool, query management sends a message to the display that prompts you for the value to be

used in the field specified. If you enter a valid value for the prompted field, the query is run with the

variable value entered at the prompt.

Creating reports in query management

Once you have created the result set, you can request that a report be printed or shown at the display

station. Use the Create Query Management Form (CRTQMFORM) command or the Work with Query

Management Form (WRKQMFORM) command to create or change a QMFORM object that puts the data

in the result set into a form specific to your needs.

Once the QMFORM and the result set are created, use the Display Report display to show the report on

your display station, or use the PRINT command to produce a printed version of the report data.

Note: Creating a report requires that you have already run a query to create a result set.

Figure 3 on page 15 illustrates how to display or print a report using query management guidelines.

Figure 2. Running a query management query

14 System i: Query Management Programming

Importing a query or form object in query management

Use one of the following methods to create a query or form object that you can use to create a query

management report:

v Specify the IMPORT command in a procedure.

v Issue the Create Query Management Query (CRTQMQRY) or Create Query Management Form

(CRTQMFORM) CL command.

v Import the query or form object from a user application using the IMPORT command.

A query management query or form is created from a source file member that contains the query or form

source.

For information on how to create queries, see “Creating queries in query management” on page 9.

For information on how to create forms, see “Creating forms in query management” on page 63.

For information on how to create procedures, see “Creating procedures in query management” on page

59.

Exporting a query or form object in query management

Use one of the following methods to export a query or form object so you can change it.

v Specify the EXPORT command in a procedure.

v Issue the Retrieve Query Management Query (RTVQMQRY) or Retrieve Query Management Form

(RTVQMFORM) CL command.

v Export the query or form from a user application using the EXPORT command.

The export process creates the query or form source in the specified source file member. The query or

form source can then be changed and imported to produce a report containing the changes when the

query is run again.

Note: Query management queries with the attribute PROMPT are exported in the same way as queries

with the attribute SQL.

Figure 3. Creating a query management report

Chapter 3. Instance processing in query management 15

Importing and exporting a procedure in query management

The process for importing and exporting query management procedures is the same as for importing and

exporting queries and forms with one exception. A query management procedure is a source physical file

member. An import or export of a procedure copies the information from one member to another.

Therefore, it is not necessary to import or export a procedure, because it is already in the externalized

format. Figure 4 illustrates the process for importing and exporting queries, forms, and procedures.

Running a procedure in query management

Use one of the following methods to start working with procedures in the query management

environment:

v Specify the procedure from inside another procedure using the RUN command.

v Issue the Start Query Management Procedure (STRQMPRC) CL command.

v Start the procedure from a user application using the RUN command.

Use query management commands to request the data from a source file member or another procedure

for query management to use in creating a query management instance. The commands in the procedure

are processed using the same instance as the instance associated with the RUN PROC command.

Query management also allows you to call multiple procedures when creating an instance using this

process. Figure 5 on page 17 illustrates how to run a query management procedure.

Figure 4. Importing and exporting query management members

16 System i: Query Management Programming

Using the SAVE DATA AS command in query management

Query management allows you to save the data created in the result set of your instance to a query

management table. Use the following methods to start query management processing when working with

the SAVE DATA AS command:

v Specify the save operation from a procedure using the SAVE DATA AS command.

v Issue the Start Query Management Query (STRQMQRY) CL command.

v Start the command from a user application using the SAVE DATA AS command.

Use query management commands to request that the data from the result set in an instance created

previously be used to save the data in an i5/OS database file to a query management table. You must

have processed a RUN QUERY command under the same instance to create the query management result

set.

Figure 6 on page 18 illustrates how to save the data in a database file to a table using a query

management instance.

Figure 5. Running query management procedures

Chapter 3. Instance processing in query management 17

Using SET GLOBAL and GET GLOBAL commands in query

management

Query management allows you to get and change variables in the global variable pool. Use the GET

GLOBAL command to get the value of a query management variable in the previously created instance

and provide it to a user program or procedure.

Use the SET GLOBAL command to set or change the value of a query management variable in the

previously created instance from a user program or procedure. Use the following methods to start query

management processing when you work with the GET GLOBAL and SET GLOBAL commands:

v Specify the command from a procedure.

v Issue the Start Query Management Query (STRQMQRY) CL command.

v Start the command from a user application.

Use query management commands to request that the values from the global variable pool in an instance

that was created previously be set from a user program or procedure. The GET GLOBAL process is the

same as the SET process, except query management gets the variable values for a user program in the

GET GLOBAL process.

Figure 7 on page 19 illustrates how query management uses the GET GLOBAL and SET GLOBAL

commands to change or retrieve query management variables.

Figure 6. Saving data to a query management table

18 System i: Query Management Programming

Introducing activation groups in query management

An activation group is like a miniature job within a job. Each activation group is a substructure of a

runtime job. Each consists of system resources (storage for program or procedure variables, commitment

definitions, and open files) allocated to one or more programs.

Application programs continue to work as they always have as long as the programs are associated with

the default activation group.

If you plan to use ILE C, you need to understand more about how activation groups affect your

programs because the system allows you to associate an application program with an activation group.

Only application programs created with ILE C can be associated with a nondefault activation group. The

DB2 Query Manager function is associated with the default activation group. All query management CL

commands also run in the default activation group.

A query management instance is associated with the activation group of the program that started the

instance. Query management instances created by programs other than ILE C are associated with the

default activation group. Query management instances created using query management CL commands

are always associated with the default activation group.

An application program can only use a query management instance if the activation group associated

with the program is also associated with that query management instance. Activation groups cannot

share a query management instance. Work done through a query management instance in one activation

group has no effect on work done by a query management instance in another activation group.

Figure 7. Using GET GLOBAL and SET GLOBAL commands

Chapter 3. Instance processing in query management 19

20 System i: Query Management Programming

Chapter 4. Commands in query management

This chapter is a reference for the commands available to query management. Use the following query

management commands when you write applications to organize general reports from database files:

v COMMIT

v CONNECT

v DISCONNECT

v ERASE

v EXIT

v EXPORT

v GET

v IMPORT

v PRINT

v RELEASE

v RUN

v SAVE DATA AS

v SET CONNECTION

v SET GLOBAL

v START

Each command is described in full and has a syntax diagram provided as a means of quickly referring to

the syntax of a command. For an explanation of the diagrams, see “How to read the syntax diagrams in

query management” on page 22.

Specifying commands and keywords in query management

For consistency when moving applications across systems, you should specify all commands, whether

used in procedures or passed through the callable interface, in uppercase letters. Similarly, when

manipulating a query object, you should specify all character keywords in uppercase letters. Text lines

(for example, page headings) may be specified in either uppercase or lowercase letters.

Command parsing in query management

For all commands, query management allows the keywords and variables associated with the commands

to be presented as a part of the command string and as part of the extended parameter list on the callable

interface. Keywords specified on the command string take precedence over keywords specified in the

extended parameter list if duplicates occur.

Parsing of keywords and values for command strings and for extended parameter lists differ in the

following manner:

Command string keywords and variables

The following rules describe how query management uses command string keywords and

variables:

v Query management assumes all command values are character strings.

v Values can be delimited by either quotation marks (") or apostrophes (').

v Delimiters are not considered part of the value.

v Quotation marks must be doubled if found inside a value that is delimited by quotation marks

('Joe''s' or "Joe""s", for example). (This rule applies to both apostrophes and quotation marks.)

© Copyright IBM Corp. 1998, 2008 21

v Quotation marks found inside a value delimited by apostrophes need not be doubled and vice

versa.

v Blanks found at the beginning or end of values delimited by quotation marks will not be

removed.

v Values that are not delimited by apostrophes or quotation marks will be delimited by a blank

or by the end of a command string.

v The values for keywords that are used as integers (such as WIDTH and LENGTH on the

PRINT command) can be presented to query management as integer values or as character

string values. If the values are presented as character strings, they are converted to integers

before being used.

Extended parameter list keywords and variables

The following rules describe how query management uses parameter list keywords and variables:

v Leading and trailing blanks will be stripped from keyword names before being used.

v Trailing blanks will be stripped from keyword values, but leading blanks will not.

v Leading and trailing blanks are not stripped from variable values before the variable name and

value are added to the query management variable pool.

v Single quotation marks and quotation marks are not stripped by query management.

v Query management does not remove quotation marks or single quotation marks.

v The values for keywords that are used as integers (such as WIDTH and LENGTH on the

PRINT command) can be presented to query management as integer values or as character

string values. If the values are presented as character strings, they are converted to integers

before being used.

How to read the syntax diagrams in query management

In this chapter, syntax is described using the structure defined below. Within the command syntax, one or

more blanks are allowed wherever a blank is used to delimit words in the command string.

v Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�� symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the �─── symbol and end with

the ───� symbol.

v Required items appear on the horizontal line (the main path).

�� STATEMENT required_item ��

v Optional items appear below the main path.

�� STATEMENT

optional_item
 ��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.

�� STATEMENT required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main path.

Specifying commands and keywords

22 System i: Query Management Programming

�� STATEMENT

optional_choice1

optional_choice2

 ��

If one of the optional items is the default, it will appear above the main path and the remaining

choices will be shown below.

��

STATEMENT
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left above the main line indicates an item that can be repeated.

��

STATEMENT

�

repeatable_item

��

A repeat arrow above a stack indicates that you can repeat the items in the stack.

v Keywords appear in uppercase (for example, PARM1). They must be spelled exactly as shown. Variables

appear in all lowercase letters (for example, parmx). They represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter

them as part of the syntax.

COMMIT in query management

The COMMIT command ends a unit of recovery and commits database changes that the unit of recovery

made.

If the COMMIT command is successful, all work is committed.

If the COMMIT command is unsuccessful, the connection state of the activation group and the states of

its connections are not changed.

The COMMIT command causes no change in the current connection unless there was a RELEASE

command performed on the current connection. If a RELEASE command was previously performed on

the current connection, it is removed and the activation group placed in an unconnected state. In a case

such as this, the next query management command should be a CONNECT or SET CONNECTION

command. The query management function does not know that the current connection was removed.

Any SQL statements issued before a CONNECT or SET CONNECTION command fails.

Authorization

None required.

Syntax

�� COMMIT

HOLD
 ��

Parameter list

HOLD

Indicates a hold on resources. If specified, currently open cursors are not closed, prepared SQL

Specifying commands and keywords

Chapter 4. Commands in query management 23

statements are preserved, and all resources acquired during the unit of work are held. However, locks

on specific rows and objects implicitly acquired during the transaction are released. If HOLD is

omitted, open cursors, except those declared with a WITH HOLD clause, are closed, prepared SQL

statements are discarded, and held resources are released.

Examples: COMMIT in query management

If you do not need the connection to RDBONE in the next unit of work, the following commands remove

the connection, assuming the commit operation is successful.

RELEASE RDBONE

COMMIT

You want to commit the changes made to RDBTWO but hold the resources acquired during the current

unit of work.

COMMIT HOLD

CONNECT in query management

You can use the CONNECT command to change the database that is associated with the query instance.

It can be used to connect an application process to a database or return the connection to the local

database manager. The CONNECT command connects to a database and places it in the current state.

The current state means the connection is used for issued SQL statements. Only one connection can be in

the current state for each activation group.

If the CONNECT command is successful:

v The previously current connection, if any, is placed in the dormant state.

v The identified application server is placed in the current state.

v The global variables DSQSDBNM and DSQCMTLV are updated. DSQSDBNM contains the name of the

current database. DSQCMTLV contains the commitment control level being used. The ConnectionInfo

in the InstanceInfo is updated with the necessary information from the SQL to reflect the current state.

If the CONNECT command is unsuccessful, the connection state of the activation group and the states of

its connection are unchanged. The instance information is not updated.

The function of the CONNECT depends on the connection management method you are using. The

methods are distributed-unit-of-work (*DUW) and remote-unit-of-work (*RUW). The default, unless you

change it, is *DUW. For information on changing the connection management method, see “START in

query management” on page 51. Table 2 lists the functional differences depending on the connection

management method.

 Table 2. CONNECT command differences between *DUW and *RUW

*DUW *RUW

Multiple connections allowed One connection allowed

CONNECT to additional database puts previous

connection in dormant state. The previous connections are

not disconnected.

CONNECT to additional database disconnects previous

connections. The previous connection or connections are

disconnected before performing the connection.

Consecutive CONNECTs to same database fails Consecutive CONNECTs to same database results in no

current connection change.

A system running under DUW connecting to a system running under RUW may result in a read-only

connection.

COMMIT

24 System i: Query Management Programming

Note: A homogeneous connection is read-only as far as commitment control is concerned. A read-only

connection is not allowed to make updates under commitment control. However, a homogeneous

read-only connection can still make non-committable updates.

Authorization

The privileges held by the user profile running the CONNECT command must include

communications-level security. (See the Security topic in the Distributed database programming topic

collection.)

Syntax

�� CONNECT TO

rdbname
 RESET

*CURRENT

*NONE

(

USER=

username

PASSWORD=

password

 ��

Parameter list of CONNECT in query management

TO

The keyword used prior to specifying the remote database to connect to.

rdbname

The name of the database instance that is to serve as the application server. It is used to specify the

relational database that is to be accessed through DRDA®. It can:

v Be up to 18 characters in length

v Consist only of:

– Uppercase characters (A-Z)

– Numerics (0-9)

– Underscore (_)

The first character must be an uppercase character.

If you specify a remote database name, you can use the USER and PASSWORD keywords to specify

the user identification and password to be used with the remote database. If you specify either of

these keywords, you must specify both of them. If you do not specify these keywords, the default

user identification is *CURRENT and the default password is *NONE.

RESET

Indicates that the current conversation to a remote database, if connected, should be released and the

connection reset to the local database.

Note: The CONNECT command should be used to reset to the local database before using the SAVE

DATA AS command. It should also be used to manage multiple query instances which have

different connection information.

The application program must be in a connectable state before the CONNECT command is issued. When

RUN QUERY and ERASE TABLE commands are directed to the connection, make sure that the

application program that issued the call to the query Common Programming Interface remains in the

callable stack. If it does not, you are implicitly disconnected when the application program ends.

Examples: CONNECT under RUW connection management

The following CONNECT command creates the RDB1 connection and places it in the current state:

CONNECT TO RDB1

CONNECT

Chapter 4. Commands in query management 25

The following command disconnects the previous connection and creates a connection to the local

database:

CONNECT RESET

The following command disconnects the previous connection before performing the connect operation:

CONNECT TO RDB2 (USER=BIZET)

Examples: CONNECT under DUW connection management

The following CONNECT command creates the RDB1 connection and places it in the current state:

CONNECT TO RDB1

The following CONNECT command put the current connection in a dormant state and creates a

connection to the local database. The local database becomes the current connection.

CONNECT RESET

The following command puts the current connection in a dormant state and creates a connection to

RDB2. The RDB1 and local connections are now in a dormant state.

CONNECT TO RDB2 (USER=BIZET)

DISCONNECT in query management

The DISCONNECT command destroys one or more connections.

The connection identified in a DISCONNECT command cannot be a connection that was used to run SQL

statements during the current unit of work. Likewise, it cannot be a connection for a protected

conversation. To remove a connection on protected conversations, use the RELEASE command.

If the DISCONNECT command is successful, each identified connection is removed.

If the DISCONNECT command is unsuccessful, the connection state of the activation group and the states

of its connections is not changed.

The creation and maintenance of connections use resources. You should disconnect connections that are

not going to be reused. You should not disconnect connections that are needed in subsequent units of

work.

You should run the DISCONNECT command immediately after a commit operation. If you remove the

current connection, the activation group is left in an unconnected state. In a case such as this, the next

query management command should be a CONNECT or SET CONNECTION command. The query

management function does not know that the current connection was removed. Any SQL statements

issued before a CONNECT or SET CONNECTION command fails.

Authorization

None required.

Syntax

�� DISCONNECT rdbname

CURRENT

ALL

 ��

CONNECT

26 System i: Query Management Programming

Parameter list

rdbname

The globally unique name of a database that serves as the application server. It specifies the relational

database to access. The relational database is the means of identifying a database that can be accessed

through DRDB support. rdbname can:

v Be up to 18 characters long

v Consist of only uppercase characters (A-Z), numerics (0-9), and the underscore (_). The first

character must be an uppercase character.

CURRENT

Identifies the current connection of the activation group.

ALL

Identifies all connections in the activation group. None of the connections can use protected

conversations.

Examples: DISCONNECT in query management

The connection to RDBONE is not needed in the next unit of work. The following command is run after

a commit operation.

DISCONNECT RDBONE

The current connection is not needed in the next unit of work. The following command is run after a

commit operation.

DISCONNECT CURRENT

None of the existing connections are needed in the next unit of work. The following command is run

after a commit operation.

DISCONNECT ALL

ERASE in query management

The ERASE command removes a form, procedure, query, or table from the database.

Authorization

ERASE FORM:

The privileges held by the user profile running the ERASE FORM command must include at least one of

the following:

v For the *QMFORM object specified on the command:

– *EXECUTE system authority on the library that contains the *QMFORM object.

– *OBJOPR and *OBJEXIST system authority on the *QMFORM object.
v *ALLOBJ special authority.

ERASE QUERY:

The privileges held by the user profile running the ERASE QUERY command must include at least one of

the following:

v For the *QMQRY object specified on the command:

– *EXECUTE system authority on the library that contains the *QMQRY object.

– *OBJOPR and *OBJEXIST system authority on the *QMQRY object.
v *ALLOBJ special authority.

DISCONNECT

Chapter 4. Commands in query management 27

ERASE PROC:

The privileges held by the user profile running the ERASE PROC command must include at least one of

the following:

v For the *FILE object specified on the command:

– *EXECUTE system authority on the library that contains the *FILE object.

– *OBJOPR, *OBJEXIST and *DLT system authority on the *FILE object.
v *ALLOBJ special authority.

ERASE TABLE:

The privileges held by the user profile running the ERASE TABLE command must include at least one of

the following:

v For the *FILE object specified on the command:

– *EXECUTE system authority on the library that contains the *FILE object.

– *OBJOPR, *OBJEXIST and *READ system authority on the *FILE object.
v *ALLOBJ special authority.

Syntax

�� ERASE FORM

PROC

QUERY

TABLE

 name

(

CONFIRM

=

YES

NO

 ��

Parameter list of ERASE in query management

name

Names a form, procedure, query, or table to be removed. You must have the appropriate ownership

and database or query authorization to remove an object.

 This name can be a qualified name of the form library/object or database.object. Specify the naming

convention you intend to use in your first query command procedure.

CONFIRM=YES | NO

This option provides for a check before performing your ERASE request. The confirmation request

occurs only when an existing object in the database is about to be erased. You will be asked if you

want the pending ERASE command performed.

 CONFIRM=YES forces a display of the confirmation. CONFIRM=NO suppresses a display of the

confirmation and erases the object.

 If your job is running interactively, an inquiry message is sent to your display station and the job is

suspended until you respond to the message. The message asks whether you want to erase the object.

If your job is running as a batch job, or DSQSMODE was set to batch mode during START

processing, CONFIRM=YES results in an error.

 The default value is CONFIRM=YES. You can change the default by setting the DSQCONFIRM

variable as a START command parameter or in the start procedure.

 When you issue the ERASE command, the system returns the message:

Object exists. Do you want to replace it?

This message is displayed only if you specify the CONFIRM=YES option or if you omit the

CONFIRM option.

ERASE

28 System i: Query Management Programming

Examples: ERASE in query management

ERASE TABLE EMP

ERASE TABLE SMITH.EMP (CONFIRM=YES

ERASE TABLE SMITH/EMP (CONFIRM=YES

ERASE PROC SMITH/MONTHEND (CONFIRM=NO

You can issue an ERASE TABLE command only on database physical files.

Command keywords are supported in the extended parameter list on the callable interface as well as in

the command string. For more information on using the extended parameter list, see “START in query

management” on page 51.

EXIT in query management

The EXIT command stops your application’s session with query management and ends the associated

instance of query management in your process. No parameters are allowed with this command. No

messages are generated.

The EXIT command is valid only when issued through the Callable Interface.

An implied EXIT command is processed for all query instances when the job ends.

The EXIT command is not valid in a query procedure.

There are no authority considerations related to the EXIT command.

Authorization

None required.

Syntax

�� EXIT ��

Parameter list

None.

Examples: EXIT in query management

See Chapter 7, “Callable interface in query management” for examples of programs that use the EXIT

command.

EXPORT in query management

The EXPORT command is used to create a file that contains the contents of certain query management

objects. Chapter 8, “Exported and imported objects in query management” discusses exported objects in

detail. The following objects can be exported: form, procedure, or query. You cannot export the contents

of a sort sequence table associated with a *QMQRY object.

For more information about sort sequence, see Appendix D, “Examples of sort sequence in query

management,” on page 231.

ERASE

Chapter 4. Commands in query management 29

Authorization

EXPORT FORM:

The privileges held by the user profile running the EXPORT FORM command must have one of the

following:

v The following system authorities:

– For the *QMFORM object specified on the command:

- *USE system authority on the library that contains the *QMFORM object.

- *USE system authority on the *QMFORM object.
– If the *FILE object specified on the command does not exist:

- *ADD and *EXECUTE system authority on the library that will contain the *FILE object.
– If the *FILE object specified on the command exists:

- *ADD and *EXECUTE system authority on the library that contains the *FILE object.

- *CHANGE and *OBJMGT system authority on the *FILE object.
v *ALLOBJ special authority.

EXPORT PROC:

The privileges held by the user profile running the EXPORT PROC command must have one of the

following:

v The following system authorities:

– For the first *FILE object specified on the command:

- *EXECUTE system authority on the library that contains the *FILE object.

- *USE system authority on the *FILE object.
– If the second *FILE object specified on the command does not exist:

- *ADD and *EXECUTE system authority on the library that will contain the *FILE object.
– If the second *FILE object specified on the command exists:

- *ADD and *EXECUTE system authority on the library that contains the *FILE object.

- *CHANGE and *OBJMGT system authority on the *FILE object.
v *ALLOBJ special authority.

EXPORT QUERY:

The privileges held by the user profile running the EXPORT QUERY command must have one of the

following:

v The following system authorities:

– For the *QMQRY object specified on the command:

- *USE system authority on the library that contains the *QMQRY object.

- *USE system authority on the *QMQRY object.
– If the *FILE object specified on the command does not exist:

- *ADD and *EXECUTE system authority on the library that will contain the *FILE object.
– If the *FILE object specified on the command exists:

- *ADD and *EXECUTE system authority on the library that contains the *FILE object.

- *CHANGE and *OBJMGT system authority on the *FILE object.
v *ALLOBJ special authority.

EXPORT

30 System i: Query Management Programming

Syntax

�� EXPORT FORM

PROC

QUERY

 name TO filename Options ��

Options

(

CONFIRM=

YES

COMMENT=

'

comment for member

'

NO

Parameter list of EXPORT in query management

name

Names a form, procedure, or query to be exported.

 This name can be a qualified name of the form library/object or database.object. Specify the naming

convention you intend to use in your initial query command procedure.

 If the form or query specified is not found and DSQSCNVT=YES is specified on the START

command, query management searches for an IBM Query for i5/OS definition with that name. If a

query definition is found, the information is used to create a temporary query or form that is usable

by query management.

filename

Names the system file that receives the exported object.

 To be consistent across systems, you should not specify more than a single file name without

qualifiers or extensions. This enables system defaults to take effect.

 If you are exporting an object to a system that is not running i5/OS, it is recommended that the name

of the file be from 1 to 8 characters long.

 Query management qualifies the single name to fit the data naming requirements of the operating

environment.

 You must be aware of these naming restrictions when you transport query management objects

between operating environments.

CONFIRM=YES | NO

This option provides for a check before performing your EXPORT request. The confirmation request

occurs only when an existing file is about to be replaced. You will be asked if you want the pending

change to occur.

 CONFIRM=YES forces a display of the confirmation. CONFIRM=NO suppresses a display of the

confirmation.

 The default value is CONFIRM=YES. You can change the default by setting the DSQCONFIRM

variable as a START command parameter or in the start procedure.

COMMENT=comment for member

Use the comment option to specify the member text when exporting a form, procedure, or query

object. Comments are useful for preserving information about the object. Because comments usually

include embedded blanks, they must be enclosed in apostrophes. Apostrophes within a comment

must be specified by two adjacent apostrophes.

Examples:

EXPORT

Chapter 4. Commands in query management 31

COMMENT=’SALES QUERY’

COMMENT=’THIS QUERY DOESN’T INCLUDE SALES’

The maximum comment length in query management is 50 characters.

CCSID considerations of EXPORT in query management

When a Query Manager query, form, or procedure is exported and the source file does not exist, the file

is created with the CCSID of the job. The data for the form CCSID is converted to the CCSID of the

source file. If the source file does exist and the CCSID of the source file is different from the CCSID of the

Query Manager query, form, or procedure, data is converted from the CCSID of the query, form, or

procedure to the CCSID of the source file.

When a Query Manager procedure is exported and the CCSID of the file it is exported from is different

from the CCSID of the file it is exported to, the data is first converted to the CCSID of the job, then to the

CCSID of the file it is going to. To avoid this extra conversion, copy the procedure instead of exporting it.

Examples: EXPORT in query management

EXPORT QUERY SAMP1 TO SAMP1EX

EXPORT FORM EXLIB/EX1 TO EXLIB/FILE(EX1F) (CONFIRM=YES

Command keywords are supported in the extended parameter list on the callable interface as well as in

the command string. For more information on using the extended parameter list, see “START in query

management” on page 51.

GET in query management

The GET command is used to get the value of a query management variable and provide it to a user

program. When using the GET command from a program, the following command syntax must be used.

Authorization

None required.

Syntax

�� GET GLOBAL varnum varlen varname

vallen

values

valtype
 ��

Parameter list

GLOBAL

In query management, the variable varname located in the global variable pool is returned to the

requester. If the variable is not found in the global pool, an error message is returned.

Extended parameter list:

 varnum

Number of varnames that are requested for this call.

 varlen

Length of each varname that is specified.

 varname

Name of the variable located in the query management variable pool.

 vallen

EXPORT

32 System i: Query Management Programming

Length of program storage that is to contain the varname value.

 values

Program storage area that is to contain the varname value.

 valtype

Data type of the storage area that is to contain the varname value.

Examples: GET in query management

For examples of using the GET command in a program, see Chapter 7, “Callable interface in query

management.”

Command keywords are supported in the extended parameter list on the callable interface as well as in

the command string. For more information on using the extended parameter list, see “START in query

management” on page 51.

IMPORT in query management

You can use the IMPORT command to copy a file that contains an exported object into one of the

following query management objects: form, procedure, or query. The IMPORT command does not affect

the external file.

name

Name of the form, procedure, or query to be imported. This can be a qualified name.

filename

Name of the system file that query management is to read (that is, the source file for the imported

object).

 In order to be consistent across systems, do not specify any more than a single name without

qualifiers or extensions; use the system defaults.

Authorization

IMPORT FORM:

The privileges held by the user profile running the IMPORT FORM command must have one of the

following:

v The following system authorities:

– If the *QMFORM object specified on the command already exists:

- *CHANGE system authority on the library that contains the *QMFORM object.

- *ALL system authority on the *QMFORM object.
– If the *QMFORM object specified on the command does not exist:

- *CHANGE system authority on the library that will contain the *QMFORM object.
– For the *FILE object specified on the command:

- *EXECUTE system authority on the library that contains the *FILE object.

- *USE system authority on the *FILE object.
v *ALLOBJ special authority.

IMPORT QUERY:

The privileges held by the user profile running the IMPORT QUERY command must have one of the

following:

v The following system authorities:

– If the *QMQRY object specified on the command already exists:

GET

Chapter 4. Commands in query management 33

- *CHANGE system authority on the library that contains the *QMQRY object.

- *ALL system authority on the *QMQRY object.
– If the *QMQRY object specified on the command does not exist:

- *CHANGE system authority on the library that will contain the *QMQRY object.
– For the *FILE object specified on the command:

- *EXECUTE system authority on the library that contains the *FILE object.

- *USE system authority on the *FILE object.
– If a *TBL object is specified on the command with the SRTSEQ keyword:

- *EXECUTE system authority on the library that contains the *TBL object.

- *USE system authority on the *TBL object.
v *ALLOBJ special authority.

IMPORT PROC:

The privileges held by the user profile running the IMPORT PROC command must have one of the

following:

v The following system authorities:

– If the first *FILE object specified on the command does not exist:

- *ADD and *EXECUTE system authority on the library that will contain the *FILE object.
– If the first *FILE object specified on the command exists:

- *ADD and *EXECUTE system authority on the library that contains the *FILE object.

- *CHANGE and *OBJMGT system authority on the *FILE object.
– For the second *FILE object specified on the command:

- *EXECUTE system authority on the library that contains the *FILE object.

- *USE system authority on the *FILE object.
v *ALLOBJ special authority.

Syntax

Parameter list

CONFIRM=YES | NO

This option provides for a check before performing your IMPORT request. The confirmation request

occurs only when an existing object in the database is about to be replaced. You will be asked if you

want the pending database changes to occur.

�� IMPORT FORM

PROC

QUERY

 name FROM filename �

�
(

CONFIRM=

YES

COMMENT=

'

comment

'

*SRC

*SRC

NO

SRTSEQ=

*JOBRUN

LANGID=

*JOBRUN

*JOB

*JOB

*LANGIDSHR

Lang. ID

*LANGIDUNQ

*HEX

*LIBL/

table

*CURLIB/

library/

 ��

IMPORT

34 System i: Query Management Programming

If your job is running interactively, an inquiry message is sent to your display, and the job is

suspended until you respond to the message. The message asks whether you want to import the

object. If your job is running in batch mode, or DSQSMODE was set to Batch during START

processing, CONFIRM=YES results in an error.

 CONFIRM=YES forces a display of the confirmation. CONFIRM=NO suppresses a display of the

confirmation.

 The default value is CONFIRM=YES. You can change the default by setting the DSQSCNRM variable

as a START command parameter or in the start procedure.

COMMENT=comment

Use the comment option to specify the member text when exporting a form, procedure, or query

object. Comments are useful for preserving information about the object. Because comments usually

include embedded blanks, they must be enclosed within apostrophes. Apostrophes within a comment

must be specified by two adjacent apostrophes.

Examples:

COMMENT=’My form’

COMMENT=’This form doesn’’t include breaks’

The maximum comment length in query management is 50 characters.

SRTSEQ

Specifies the sort sequence used for this query. The sort sequence determines which sort sequence

table is used when the query is run. The SRTSEQ parameter is allowed only at the time you create a

query. The SRTSEQ parameter is not allowed when you create a form. The possible values are:

*SRC

Contains the specification of the sort sequence used in creating the query. If SRTSEQ is not specified

in the source file member, the default for SRTSEQ is *JOBRUN.

*JOBRUN

Uses the SRTSEQ associated with the job at the time the query is run.

*JOB

Uses the sort sequence associated with the job at the time the query is created.

*HEX

Uses the binary value of the character to determine the sort sequence.

*LANGIDSHR

Uses a system provided table with shared weights for each character as the sort sequence. The table

used is determined by the value specified for the LANGID parameter.

*LANGIDUNQ

Uses a system provided table with unique weights for some characters as the sort sequence. The table

to be used is determined by the value specified for the LANGID parameter. If

SRTSEQ=*LANGIDUNQ and the LANGID parameter is not specified, the default for LANGID is

*JOBRUN.

tablename

Uses an external sort sequence table object which contains the sort sequence to use when the query is

run.

LANGID=*SRC | *JOBRUN | *JOB | Language ID

The language identifier associated with the query. At this time, the only use of this parameter is to

determine which IBM-supplied sort sequence table to use when the query is run. It can only be used

when SRTSEQ=*LANGIDUNQ or SRTSEQ=*LANGIDSHR. Regardless of the SRTSEQ value, the

LANGID value is validated and the created query contains the specified LANGID value.

IMPORT

Chapter 4. Commands in query management 35

*SRC

Contains the specification of the language identifier to use when creating queries. If LANGID is

not specified in the source, the default value of *JOBRUN is used.

*JOBRUN

The language identifier to use when the query is run is determined at the time the query is run.

*JOB

The language identifier to use when the query is run is determined at the time the query is

created.

Language ID

A three-character language identifier.

Usage

The IMPORT command is typically used in the following situations:

v To copy or propagate form, procedure, and query objects from one query management installation to

another (the objects are exported by the sending installation and imported by the receiving

installation).

v To use a full-function editor outside of query management. The following is a typical scenario:

1. First, export the query management object. This causes the creation of an external file.

2. Next, invoke a text editor. Once inside the editor, you can perform normal editing functions like

copying and moving.

3. After you finish editing, return to query management and import the file. The edited object is

stored in the database.
v For application programmers who want to migrate SQL queries from program libraries that typically

reside outside of query management to libraries inside query management, for purposes of

modification and interactive processing (testing).

The IMPORT command copies the contents of the specified file into the database. For SQL queries and

procedures, each record in the file becomes a separate line in the object. All files that were exported

through the query management EXPORT command can be imported.

When importing files that contain SQL queries and procedures, DB2 for i5/OS query management

accepts records that have a logical record length that is greater than 79, even though the resulting data

might be truncated. If query management finds a logical record length that is greater than 79, it displays

a warning message.

If the imported query has a fixed record format (and logical record length greater than 79), then query

management accepts only data in positions 1 through 79 and ignores the rest.

If the imported form has a fixed record format (and logical record length greater than 150), then query

management accepts only data in positions 1 through 150 and ignores the rest.

When importing query objects with a logical record length less than 79, DB2 for i5/OS query

management pads the record with blanks up to and including position 79. If the line contains an open

delimited string, this padding is included within the delimited string and might cause unexpected results.

When importing form objects with a logical record length less than 150, query management pads the

record with blanks up to and including position 150. If the line contains an open delimited string, this

padding is included within the delimited string and might cause unexpected results.

When importing SQL query and procedure objects, query management does not perform any validation

or semantic checking on the contents of the files. Therefore, it is possible to establish query and

procedure object s that contain nondisplayable characters (this could happen if a program’s object file

IMPORT

36 System i: Query Management Programming

were imported as a query). Also, it is possible to IMPORT SQL statements into the procedure object and

vice versa. It is your responsibility to avoid such mistakes because query management cannot

recategorize contents.

Query management validates form objects. If some part of the file fails a validation test, then the object is

brought into the database, but you are sent warning messages. It is possible for the file to pass the

validation test, yet provide unpredictable results when used for formatting.

CCSID considerations of IMPORT in query management

When a Query Manager query or form is imported, it is tagged with the CCSID of the file that the query

or form is imported from. When a Query Manager procedure is imported and the file does not exist, a

file is created with the CCSID of the job. When a query management procedure is imported and the file

does exist, the procedure is converted to the CCSID of the job and then to the CCSID of the file that is

imported. To avoid the additional conversion, copy the procedure instead of importing it.

Examples: IMPORT in query management

IMPORT FORM REPORT1 FROM REPT1EX

IMPORT QUERY SALARYWK FROM JENSON

Command keywords are supported in the extended parameter list on the callable interface as well as in

the command string. For more information on using the extended parameter list, see “START in query

management” on page 51.

PRINT in query management

The PRINT command is used to print a hard copy listing of a query management object. You cannot print

the contents of a sort sequence table associated with a *QMQRY object. However, the name of the sort

sequence table or sort sequence value associated with the query is printed.

The PRINT command uses standard system facilities for printing. Query management does not

externalize the printer attributes to your application. Nor does query management alter these attributes'

values. Instead, it honors the printer definitions currently in effect.

An object’s printed appearance is very much like its screen appearance. However, on a REPORT, there are

some differences between display format and print format.

v The panel title line of the displayed REPORT object is replaced with a page heading at the top of each

page in the printed report (assuming that a page heading has been defined).

v A page footing is provided at the bottom of each page of the printed report, but only once at the

bottom of the displayed object.

Authorization

PRINT FORM:

The privileges held by the user profile running the PRINT FORM command must have one of the

following:

v For the *QMFORM object specified on the command:

– *USE system authority on the library that contains the *QMFORM object.

– *USE system authority on the *QMFORM object.
v *ALLOBJ special authority.

PRINT PROC:

IMPORT

Chapter 4. Commands in query management 37

The privileges held by the user profile running the PRINT PROC command must have one of the

following:

v For the *FILE object specified on the command:

– *EXECUTE system authority on the library that contains the *FILE object.

– *USE system authority on the *FILE object.
v *ALLOBJ special authority.

PRINT QUERY:

The privileges held by the user profile running the PRINT QUERY command must have one of the

following:

v For the *QMQRY object specified on the command:

– *USE system authority on the library that contains the *QMQRY object.

– *USE system authority on the *QMQRY object.
v *ALLOBJ special authority.

PRINT REPORT:

The privileges held by the user profile running the PRINT REPORT command must have one of the

following:

v If a *QMFORM object is specified on the command:

– *USE system authority on the library that contains the *QMFORM object.

– *USE system authority on the *QMFORM object.
v *ALLOBJ special authority.

Syntax

�� PRINT FORM

PROC

QUERY

 name

(

PRINTER

=

printer name
 ��

�� PRINT REPORT

�

(

WIDTH

=

max char per line

LENGTH

=

max number lines

FORM

=

form name

PRINTER

=

printer name

DATETIME

=

YES

NO

PAGENO

=

YES

NO

 ��

Parameter list

name

The name of the object to be printed. The name specified may be a form, procedure, or query in the

database.

PRINT

38 System i: Query Management Programming

If the form or query specified is not found and DSQSCNVT=YES is specified on the START

command, query management searches for an IBM Query for i5/OS definition with that name. If a

query definition is found, the information is used to create a temporary query or form that is usable

by query management.

WIDTH=maximum characters per print line

An integer between 22 and 378 inclusive.

 Reports that are wider than the print WIDTH will be split between pages. Query objects other than

reports are not split between pages. If the object is wider than the print width, the lines in the

printout will be truncated on the right.

 It is important that you ensure the compatibility of WIDTH with the printer you are using. For

example, if your current printer settings identify a 10-pitch device (10 characters per inch) mounted

with 8.5-inch wide paper, then a WIDTH value of 132 results in modified output. The exact result

might depend on printer hardware and software. Because query management does not know the

width of the physical printer, no special message is displayed when this situation occurs.

 If you do not specify this option, then query management uses the corresponding system or user

default. If this value is not available, then the default is set to 80.

LENGTH=maximum number of lines per page

An integer between 1 and 255 inclusive.

 When a report is to be printed and the value for LENGTH is inadequate (that is, if the value for

LENGTH is less than the total number of lines needed for column headings, page headings, and

footings, plus the line needed to print the page number, date, and time), then an error message is

generated and the report is not printed.

 For LENGTH values within the range allowed, query management performs a page eject whenever

the number of lines of report data printed on a page is equal to LENGTH.

 If you do not specify this option, then query management uses the corresponding system or user

default. If this value is not available, then the default is set to 66.

FORM=form name

The name of the FORM that you want to use to format your data. If no form is specified, the form

used in the previous RUN QUERY is used.

PRINTER=printer name

The name of the printer that produces the output.

 Query management can be directed to a different printer file through the use of the OVRPRTF

(Override Printer File) CL command. This command cannot be used to permanently change query

management printer files. However, to run a PRINT command again and use the default page length

and width values, use the Change Printer File (CHGPRTF) CL command to permanently change the

printer file.

DATETIME=YES | NO

This option controls the generation and display of the system date and time on the bottom of each

page. When DATETIME=YES, the date and time are placed on the last line of each page. When

DATETIME=NO, the system date and time do not print. The default for this option is YES.

PAGENO=YES | NO

This option controls the printing of page numbers on the last line of each page. The default for this

option is YES.

 On OS/2, the default for this option is obtained from your profile.

Note: You may use any or all of the options associated with the PRINT REPORT command, but each

option should only be used once. If an option is used more than once, the last one will be used.

PRINT

Chapter 4. Commands in query management 39

CCSID considerations of PRINT in query management

When a Query Manager query is printed, it is converted from the CCSID that the query is tagged with to

the CCSID of the job. When a Query Manager form is printed, no CCSID conversion takes place. When a

Query Manager report is printed, the data is in the CCSID of the job. If a form is used on a PRINT

REPORT command, no CCSID conversion is done and parts of the form may not be recognized. When a

Query Manager procedure is printed, it is converted to the CCSID of the job.

Examples: PRINT in query management

PRINT QUERY queryname

PRINT FORM formname

PRINT PROC procname

PRINT REPORT

PRINT REPORT (WIDTH=80 LENGTH=60 DATETIME=YES PAGENO=YES

PRINT QUERY Q1 (PRINTER=PRT1

PRINT PROC LIBA/PROCA(MBRA)

Printer file use in query management

Default printer files called QPQXOBJPF and QPQXPRTF are included as part of query management and

are in the QSYS library. These printer files are used when a PRINT QUERY, PRINT PROC, or PRINT

REPORT command is issued. The printer file QPQXOBJPF has page length and width defaults of 66 lines

and 132 characters, respectively. The printer file QPQXPRTF has page length and width defaults of 66

lines and 80 characters, respectively. The printer device name specified by the printer file is *JOB, which

lets all printer output be directed to the printer set up for the job. Unless overridden, the printer files

QPQXOBJPF and QPQXPRTF are used by query management for formatting the printed objects and

report.

You can direct query management to use a different printer by specifying a value on the PRINT

command or by changing the default value DSQAPRNM on the START command from *SAME to a

printer name or *JOB.

You can direct query management to use a different printer file by using the Override Printer File

(OVRPRTF) CL command.

You can use the Change Printer File (CHGPRTF) CL command to permanently change the query

management printer files QPQXOBJPF and QPQXPRTF. To use defaults again, issue another CHGPRTF

CL command to change the attributes back.

On every installation, the printer files are created again in the QSYS library. All changes to the printer

files must be applied again. To save changes to a printer file, you can create your own printer file in your

library with the desired attributes and use the OVRPRTF CL command to direct query management to

this printer file. You can also copy the printer files to your own library and make the changes to the copy

in that library. To use a printer file with the same name as the one in the QSYS library, your library must

be in the library list before the QSYS library.

PRINT object formatting in query management

While processing the PRINT QUERY and PRINT PROC commands, query management formats the

printed output into 132 column lines. The column lines are broken down into 123 bytes of text and 7

bytes for the line number, which is generated during the PRINT command.

PRINT

40 System i: Query Management Programming

The width of 132 is wide enough to handle the printing of most files with ease and is compatible with

most i5/OS printers.

Directing the printer output to a printer with a line width less than 132 characters results in possible loss

of data unless the printer file has *YES specified for the Fold Record parameter. The default for the Fold

Record parameter in the QPQXOBJPF printer file is *NO.

PRINT report formatting in query management

While processing the PRINT REPORT command, query management formats the printed report using the

width specified on the PRINT command or the default from the printer file. If the report is wider than

the print WIDTH, it is split between pages. In this case, multiple printer files are opened, and each

segment of each report line is directed to the appropriate opened printer file.

If the report is directed to a printer with a width less than the WIDTH specified on the PRINT command

or in the printer file, each print record is truncated. If the Fold Record option in the printer file is

changed from the default to *YES, each print record is wrapped. For example, a report that formats to 200

columns when printed with a command of PRINT REPORT (WIDTH=200 PRINTER=xyz, results in line

wrapping if the printer width is less than 200. The Record Wrap option on the printer file has been

overridden to *YES. If the Record Wrap option is not overridden, the rightmost columns in the report are

truncated.

Query management uses the sort sequence table in effect when the query was run to do report formatting

for:

v Calculations of

– MIN

– MAX
v BREAKn level processing against the following data types:

– CHAR

– VARCHAR

– DBCS-Open

– DBCS-Either data

Note: Query management does not support the use of sort sequence for MIN and MAX calculations for

BREAKn level processing for GRAPHIC and VARGRAPHIC data types. The sort sequence is not

applied to DBCS data. Instead, the binary value of each byte of the DBCS data is used for

comparison.

For more information on using sort sequence, see Appendix D, “Examples of sort sequence in query

management,” on page 231.

RELEASE in query management

The RELEASE command places one or more connections in the released state. The released state means a

disconnect is to occur for the connection at the next successful commit operation. A rollback has no effect

on connections. You can think of the released state as a pending disconnect.

If the RELEASE command is successful, each identified connection is placed in the released state and will

be disconnected at the next successful commit operation.

If the RELEASE command is unsuccessful, the connection state of the activation group and the states of

its connections are not changed.

PRINT

Chapter 4. Commands in query management 41

The creation and maintenance of connections use resources. You should put connections that are not

going to be reused in the released state. You should not release connections that are needed in subsequent

units of work.

If the current connection is in the released state when a commit operation runs successfully, the

connection is removed and the activation group is left in an unconnected state. In a case such as this, the

next query management command should be a CONNECT or SET CONNECTION command. The query

management function does not know that the current connection was removed. Any SQL statements

issued before issuing a CONNECT or SET CONNECTION command will fail.

Authorization

None required.

Syntax

�� RELEASE rdbname

CURRENT

ALL

 ��

Parameter list

rdbname

The globally unique name of a database that serves as the application server. It specifies the relational

database to access. The relational database is the means of identifying a database that can be accessed

through DRDA support. rdbname can:

v Be up to 18 characters long

v Consist of only uppercase characters (A-Z), numerics (0-9), and the underscore (_). The first

character must be an uppercase character.

CURRENT

Identifies the current connection of the activation group.

ALL

Identifies all connections in the activation group.

Examples: RELEASE in query management

The connection to RDBONE is not needed in the next unit of work. The following command causes it to

be removed at the next successful commit operation.

RELEASE RDBONE

The current connection is not needed in the next unit of work. The following command causes it to be

removed at the next successful commit operation.

RELEASE CURRENT

None of the existing connections are needed in the next unit of work. The following command causes

them to be removed at the next successful commit operation.

RELEASE ALL

RUN in query management

The RUN command processes a procedure or query. When you issue the RUN command, you must

identify the procedure or query that you want processed. Therefore, the procedure or query must exist in

the database before issuing the RUN command.

RELEASE

42 System i: Query Management Programming

When used to process a query (SELECT only), the RUN command produces new data, replacing the

existing data produced from any previous RUN QUERY.

When running in interactive mode, the results of a query (SELECT only) will be displayed. When

running in batch mode, the results will not be displayed.

When using a query that changes a field defined with a referential constraint, constraint checking is done

and violation errors might occur. Check-pending errors might occur when query management changes or

refers to a field in a dependent file or changes a field in a parent file.

Normally, a query uses a form when run. This can occur in two ways:

1. An existing form is explicitly named on the RUN command by using the FORM option.

2. A default form is created. This default form is constructed using rules that take into consideration the

column attributes of the DATA.

Authorization

RUN PROC:

The privileges held by the user profile running the RUN PROC command must have one of the

following:

v For the *FILE object specified on the command:

– *EXECUTE system authority on the library that contains the *FILE object.

– *USE system authority on the *FILE object.
v *ALLOBJ special authority.

RUN QUERY:

The privileges held by the user profile running the RUN QUERY command must have one of the

following:

v The following system authorities:

– For the *QMQRY object specified on the command:

- *USE system authority on the library that contains the *QMQRY object.

- *USE system authority on the *QMQRY object.
– If a *QMFORM object is specified on the command:

- *USE system authority on the library that contains the *QMFORM object.

- *USE system authority on the *QMFORM object.
– For the SQL objects referenced in the query:

- The required privileges are documented in SQL reference.
v *ALLOBJ special authority.

Syntax

�� RUN

�

 PROC name

QUERY

name

(

FORM

=

form name

DISPLAY

=

YES

NO

 ��

RUN

Chapter 4. Commands in query management 43

Parameter list

name

The name of the QUERY being run.

FORM=form name

This option is meaningful only for queries that contain a SELECT statement.

 The FORM option specifies the form to be used in formatting the report that the RUN command

automatically displays when running in interactive mode.

 If the form specified by using the FORM option cannot be found (for instance, when the form does

not exist), then the RUN command is rejected with an error message. If the form does exist but

simply will not work with the result set (perhaps different data types for the columns were specified),

then query management responds with an error message.

 If you omit the FORM option, the default form is used.

 If the form or query specified is not found and DSQSCNVT=YES is specified on the START

command, query management searches for an IBM Query for i5/OS definition with that name. If a

query definition is found, the information is used to create a temporary query or form that is usable

by query management.

DISPLAY=YES | NO

Use the DISPLAY keyword to indicate whether to display the report. This keyword defaults to YES if

you are processing interactively. If you specified batch mode on the START command, this keyword

is ignored.

 You can use the extended parameter list format for this command. For more information on this

format, see “GET in query management” on page 32.

RUN considerations in query management

Date format use for RUN in query management

When a Query Manager query contains a date format that is different from the job date format and the

query contains global variables, the date format used to interpret the SQL statement is an SQL date

format. This is done to avoid choosing between the job date format and the query date format when

interpreting any date literal in the SQL statement.

CCSID use of RUN in query management

Query management queries are interpreted in the CCSID that they are tagged with. When data is

retrieved from a file that is in a different CCSID than the job, the data is converted to the CCSID of the

job if it is displayed or printed. When data is saved to a database file, it is converted to the CCSID of the

file if the file already exists or into the CCSID of the file that the data was retrieved from if a new file is

created. If the data is saved and not displayed, there is no CCSID conversion if a new file is created. To

avoid the conversion of data from the original file CCSID to the job CCSID to the file that the data is

saved into, specify the DISPLAY=NO parameter on the RUN QUERY command before running the SAVE

DATA AS command.

If a form is used that was created using a file with a different CCSID than the job, the text fields are not

converted. This could result in unrecognizable text on the displayed report. To improve the appearance of

the report, export the form to a file with the same CCSID as the job and import it again.

CALL SQL RUN limitations in query management

If the CALL SQL statement is run through Query Manager, and the called program runs locally, the

called program cannot invoke the:

v Query Manager CPI interface

v Query Manager CL commands

v SQL Query Manager CL commands.

RUN

44 System i: Query Management Programming

Query Manager cannot be run recursively. However, if the called program runs remotely, the called

program can invoke Query Manager on the remote system. The CALL SQL statement fails with the

SQL0469 error is because an attempt is made to call a procedure that is defined with an output

parameter. This is a runtime error, not a query definition error.

Examples: RUN in query management

RUN QUERY QN1

RUN PROC WEEKREPT

RUN QUERY SMITH.Q6 (FORM=SMITH.SAL_REPT

Command keywords are supported in the extended parameter list on the callable interface as well as in

the command string. For more information on using the extended parameter list, see “START in query

management” on page 51.

SAVE in query management

Use the SAVE command to save data in a table in the database. The saved table is named according to

the name you specify with the command.

If the result set is saved and a table or view is actually being replaced, then the data must be compatible

with the existing definition. Compatible data has matching data types, lengths, and null attributes.

Specifically, the number of columns in the result set must match the target, and the columns must have

compatible data types and null characteristics. If the two objects are incompatible, then query

management rejects the SAVE command and the database remains unchanged.

If the name on the SAVE command already exists as a view in the database, the table on which the view

is defined will be changed according to the rules of updating a table through a view.

The column names for a saved table that does not already exist are generated by query management

using the same algorithm that is used in generating the default column headings in the form object. You

cannot change the column names.

For information about using the SAVE command with double-byte character set (DBCS) graphic data

(DBCS-graphic data type), see Appendix A, “DBCS data in query management.”

Authorization

The privileges held by the user profile running the SAVE command must have one of the following:

v The following system authorities:

– If the *FILE object specified on the command does not exist:

- *ADD and *EXECUTE system authority on the library that will contain the *FILE object.
– If the *FILE object specified on the command already exists:

- *EXECUTE system authority on the library that contains the *FILE object.

- *OBJALTER and *CHANGE system authority on the *FILE object.
v *ALLOBJ special authority.

Syntax

RUN

Chapter 4. Commands in query management 45

�� SAVE DATA AS tablename

�

(

CONFIRM

=

YES

NO

COMMENT

=

'comment for table'

ACTION

=

REPLACE

APPEND

 ��

Parameter list

DATA

Refers to the active result from the previously running query.

tablename

The name of the table or view in which the data is stored in the database. It is normally unqualified.

 The table name must meet i5/OS system naming conventions. SQL-supported long names and names

with special characters are not supported by the SAVE DATA AS command.

 If the table name specified does not exist in the database, a new table is created. This name can be a

qualified name of the form library/object or database.object. Specify the naming convention you

intend to use in your initial query command procedure.

 To save the data to a table, you must have proper SQL authority to change or create a table. Refer to

the SQL reference for table authorization rules. If ACTION=REPLACE, you must have authority to

the Clear Physical File Member (CLRPFM) CL command also.

 SQL conventions allow a view to be updated only if it is associated with just one table. Updating a

view on multiple tables is not allowed, nor is updating a view associated with a table that is an SQL

catalog.

CONFIRM=YES | NO

This option provides for a check before performing your SAVE request. The confirmation request

occurs only when an existing object in the database is about to be replaced. You will be asked if you

want the pending database changes to occur.

 CONFIRM=YES forces a display of the confirmation. CONFIRM=NO suppresses a display of the

confirmation. In either case, a confirmation message is generated to inform you that the SAVE

operation is complete.

 The default value is CONFIRM=YES. You can change the default by setting the DSQCONFIRM

variable as a START command parameter or in the start procedure.

COMMENT='comment for table'

Use this option to supply a comment when saving data as a table. Comments are useful for

preserving descriptive information about the object.

 Because commentary usually consists of multiple words and embedded blanks, you must enclose it in

apostrophes. Apostrophes embedded within the commentary must be entered as two adjacent

apostrophes.

 Examples:

 COMMENT=’The master EMPLOYEE table-see John (X3971)’

 COMMENT=’Don’t ERASE this data without telling Phil!’

 Query management restricts object commentary to a maximum of 50 characters, excluding the

apostrophes.

ACTION=REPLACE | APPEND

The ACTION=REPLACE option causes an existing table or view to be replaced. The

SAVE

46 System i: Query Management Programming

ACTION=APPEND option causes the data to be added to the end of an existing table or view. The

default is ACTION=REPLACE. The ACTION keyword is ignored if the table or view does not exist.

Note: You can use any or all of the options associated with the SAVE command, but each option should

only be used once.

Examples: SAVE in query management

SAVE DATA AS EMP12

SAVE DATA AS EMP12 (COMMENT=’CLASSIC TWO TABLE JOIN’

Command keywords are supported in the extended parameter list on the callable interface as well as in

the command string. For more information on using the extended parameter list, see “START in query

management” on page 51.

Null value considerations of SAVE in query management

Because null values can be specified for fields and columns, you should keep the following in mind

when saving data using the SAVE DATA AS command.

v A column which resulted from an SQL function is null capable.

v If a report has a column from an SQL function using group by, and if no records were selected, the

value for the column is null.

v A column that results from an SQL numeric expression is null capable.

v If a result field is created based on a null-capable field, it is null capable.

v If a null value is encountered during the calculation of a result field, the value for that result field is

null. For example, if a field in concatenation contains a null value, the result contains a null value. If a

field used in a substring operation contains a null value, the result contains a null value.

Referential constraint considerations of SAVE in query management

When using the i5/OS referential constraint capabilities and features, you should keep the following in

mind using the SAVE DATA AS command.

v If a selected table has a referential constraint, the constraint is not propagated to the output table when

it is created for the SAVE DATA AS command.

v When you output the result of a query to an existing table, the SAVE DATA AS command may fail if

you are replacing the table and it is a primary with a constraint relationship.

v When you output the result of a query to an existing table, the SAVE DATA AS command may fail if

the output table has a referential constraint that is violated. This error may not be detected until after

the existing table has been changed. For example, if data in the existing table is replaced, the table is

cleared before the new data is inserted.

v Check-pending errors might occur when query management attempts to save data to a dependent or

parent file when an established or enabled constraint is in the check-pending status. Check-pending

errors should be caught before the existing table is changed. The SAVE DATA AS command processing

indicates whether the file is changed at the time the error occurred.

v Take care when using the SAVE DATA AS command to replace data in a table. For example, referential

constraints can be set up in such a way that if a record is deleted from a table, one or more records in

another table may also be deleted. When doing a SAVE DATA AS command, if the data is being

replaced a Clear Physical File Member (CLRPFM) command is executed against the file if it is a

physical file or if an SQL DELETE is executed against a logical file. An SQL INSERT is done in any

case to actually insert the data into the output table.

Long column name considerations of SAVE in query management

When the SAVE DATA AS command creates an output table, selected long column names and column

names with special characters are retained in the output table. If the column name for the selected

SAVE

Chapter 4. Commands in query management 47

column is a duplicate of another column name or system column name, the column name is modified to

make it unique. No warnings are generated indicating that the column name of the column in the outfile

is different than the original column name. For example, if a query of files A and B:

 Table name System column name Column name

A NAME EMPLOYEENAME

B EMPNAME EMPLOYEENAME

B CUSNAME NAME

is output to table C, it will have the following names:

 Table name System column name Column name

C NAME EMPLOYEENAME

C EMPNAME EMPLOYEENAME1

C CUSNAME NAME2

SET CONNECTION in query management

The SET CONNECTION command changes the state of a connection from dormant to current. The

dormant state means the connection is suspended. When the connection is in the dormant state, no SQL

statements use the connection except for commits and rollbacks. The current state means the connection

is used for issued SQL statements. Only one connection can be in the current state for each activation

group. The SET CONNECTION command is useful only when running under DUW connection

management.

If a SET CONNECTION command is successful:

v The previously current connection, if any, is placed in the dormant state.

v The identified application server is placed in the current state.

v The global variables DSQSDBNM and DSQCMTLV are updated. DSQSDBNM contains the name of the

current database. DSQCMTLV contains the commitment control level being used. The connection

information in a query management instance is updated with the necessary information from the SQL

communication area to reflect the current state.

If the SET CONNECTION command is unsuccessful, the connection state of the activation group and the

states of its connection are unchanged. The instance information is not updated.

Authorization

None required.

Syntax

�� SET CONNECTION rdbname ��

Parameter list

rdbname

The globally unique name of a database that is to serve as the application server. It specifies the

relational database to access. The relational database is the means of identifying a database that can

be accessed through DRDA support. rdbname can:

v Be up to 18 characters long

v Consist of only uppercase characters (A-Z), numerics (0-9), and the underscore (_). The first

character must be an uppercase character.

SAVE

48 System i: Query Management Programming

Examples: SET CONNECTION in query management

The following commands send SQL statements to RDBONE after the first command, to RDBTWO after

the second, and then to RDBONE again after the third command. These examples are contingent on

running under DUW connection management.

CONNECT TO RDBONE ...
SQL statements ...
CONNECT TO RDBTWO ...
SQL statements ...
SET CONNECTION RDBONE ...
SQL statements

The first CONNECT command creates the RDBONE connection and places it in the current state. The

second CONNECT command creates the RDBTWO connection, places it in the current state, and places

RDBONE in the dormant state. The SET CONNECTION command returns RDBONE to the current state

and places RDBTWO in the dormant state.

SET GLOBAL in query management

The SET GLOBAL command is used to set the value of a query management variable from the user

program or procedure. When using the SET GLOBAL command from a procedure, the short version of

the command syntax must be used. When using the SET GLOBAL command from a program, the

extended version of the command syntax must be used.

Authorization

None required.

Syntax

�� SET GLOBAL (varname=userval

varnum

varlen

varnames

vallen

values

valtype
 ��

Parameter list

GLOBAL

In query management, the variable varname located in the global variable pool is set by the requester.

If the variable does not exist, a new variable is created. If the variable does exist, its contents are

replaced.

varname

Name of the variable located in the query management variable pool. For rules that apply to variable

names used across the callable interface, see “Variable names in the query management CI” on page

87.

userval

The value that is to be associated with the variable name specified by varname. If it is a constant

enclosed in apostrophes, the apostrophes are removed.

Extended parameter list:

 varnum

Number of varnames that are requested for this call.

SET CONNECTION

Chapter 4. Commands in query management 49

varlen

Length of each varname that is specified.

 varnames

Name of the variable located in the query management variable pool.

 vallen

Length of program storage that is to contain the varname value.

 values

Program storage area that is to contain the varname value.

 valtype

Data type of the storage area that is to contain the varname value.

Examples: SET GLOBAL in query management

The following are examples of the SET GLOBAL command as used in a procedure. For examples of using

the SET GLOBAL command in a program, see Chapter 7, “Callable interface in query management.”

SET GLOBAL (CHARVAR = ’abc’

SET GLOBAL (NUMBVAR = 199

SET GLOBAL (NAMEVAR = MYTABLE

SET GLOBAL (CHARVAR=’abc’

Quotation marks in varname values when using SET GLOBAL in query

management

Use two adjacent single quotation marks to represent a quotation mark in a character string varname

value if the variable is set with the short command syntax. Use a single quotation mark in a character

string varname value to represent a quotation mark if the variable is set through the extended parameter

list format. See Appendix C, “Use of quotation marks and apostrophes when setting global variables in

query management” for additional information.

Command keywords are supported in the extended parameter list on the callable interface as well as in

the command string. For more information on using the extended parameter list, see “START in query

management” on page 51.

Programming considerations of SET GLOBAL in query management

The SET GLOBAL command is useful for selecting runtime records. You do not need to save numerous

QMQRY objects with different SELECT fields or WHERE conditions.

For example, you may want to run a query on a file that contains records for employees whose names

start with letters in the first part of the alphabet. You may also want to run the same query with records

for employees whose names start with letters in the last part of the alphabet. Your query object, named

EMPREPORT, could contain the following SQL SELECT statement:

 SELECT NAME,DEPT,EMPNO FROM MASTER

 WHERE NAME = &STARTAL AND NAME < &ENDAL

You could then set up a procedure with the statements:

 “SET GLOBAL (STARTAL=‘‘‘A’’’”

 “SET GLOBAL (ENDAL=‘‘‘J’’’”

 “RUN QUERY EMPREPORT”

 “SET GLOBAL (STARTAL=‘‘‘K’’’”

 “SET GLOBAL (ENDAL=‘‘‘Z’’’”

 “RUN QUERY EMPREPORT”

SET GLOBAL

50 System i: Query Management Programming

You could also run the EMPREPORT query with the Start Query Management Query (STRQMQRY) CL

command from an interactive mode. You are prompted for variables STARTAL and ENDAL before the

SELECT statement is performed.

START in query management

The START command provides an interface to start an instance of query management. This command is

only valid when issued through the callable interface. The START command allows for values to be

specified that indicate how the query management session is to be started.

Authorization

The privileges held by the user profile running the START command must have one of the following:

v The following system authorities:

– If a *FILE name is specified with the DSQSRUN or DSQSCMD keywords, the *FILE objects require

the same authorization as the RUN PROC command.
v *ALLOBJ special authority.

Syntax

�� START

�

(

DSQSMODE=

BATCH

INTERACTIVE

DSQSCMD

=

procname

DSQSRUN

=

procname

DSQSNAME=

*SAA

*SYS

DSQSCNVT=

YES

NO

ONLY

DSQOAUTH=

authorization-list

*LIBCRTAUT

*EXCLUDE

*ALL

*CHANGE

*USE

DSQSDBNM=

*CURRENT

*NONE

rdbname

DSQUSER=

*CURRENT

username

DSQPASSWORD=

*NONE

password

DSQCMTLV=

NONE

UR

CS

RS

RR

DSQRDBCNNMTH=

*DUW

*RUW

DSQCONFIRM=

YES

NO

 ��

��

keynum

keylen

keywords

vallen

values

valtype
 ��

SET GLOBAL

Chapter 4. Commands in query management 51

Extended parameter list of START

keynum

Number of keywords that are passed with this call.

keylen Length of each specified keyword.

keywords

Name of the START command keyword that is being set.

 The following keywords are used on the START command in query management:

v DSQSMODE indicates the mode of query management operation when subsequent commands are

issued. Valid options are:

 INTERACTIVE

Allows the display screen to be shown during query management processing. Any reports

generated as a result of a RUN QUERY command are shown on your display screen. Any

confirmation messages requiring a response are shown on your display screen to obtain your reply.

 BATCH

No display screens are shown during query management processing. Any messages requiring a

response result in an error. All other messages are sent to the job log.

The keyword value set for the DSQSMODE variable on the START command overrides any

keyword value set for the DSQSMODE variable via the query command procedure.
v DSQSCMD is the name of a file that is used to start the query management session. The SET GLOBAL

command is the only type of statement allowed in this procedure. If the DSQSNAME keyword is not

specified on the START command, *SAA conventions are used to find the query command procedure;

otherwise, the naming conventions set by the DSQSNAME keyword are used. If the DSQSCMD

keyword is not specified on the START command, query management searches for and runs a default

procedure, DSQSCMDP. The START command does not fail if the default procedure is not found.

Other than the parameters to the START command, this is the only place a DSQ data variable can be

set.

v DSQSRUN names the query management procedure to process after initialization is started. All valid

procedure commands are allowed.

v DSQSNAME is the naming convention to be used when processing query commands and the SQL

query. See “Naming conventions for query objects for query management” on page 2 for more

information. The keyword value set for DSQSNAME on the START command will override any

keyword value set for DSQSNAME in the query command procedure.

*SAA The SQL naming convention is used. Any qualified query object name specified in commands

or query procedures will be of the format 'database.object'

*SYS Any qualified query object name specified in commands or query procedures will be of the

format 'library/object'

v DSQSCNVT indicates whether query management will search for an IBM Query for i5/OS definition

object if a DB2 for i5/OS query management object is not found. The information contained in the

query definition is used to create a temporary query management object to be used in a command.

For example, the command RUN QUERY MYLIB/QRY1 tells query management to search for a query

management query object named QRY1. If that object is not found, query management searches for a

query definition object and uses the information that is contained in it to run a query.

YES Query management searches for an IBM Query for i5/OS definition object if a DB2 for i5/OS

query management object is not found.

NO Query management does not search for an IBM Query for i5/OS definition object if a DB2 for

i5/OS query management object is not found.

ONLY Query management only searches for an IBM Query for i5/OS definition object.

START

52 System i: Query Management Programming

v DSQOAUTH is the authority given to any object created by query management. You can specify a

default public authority for all objects that are created during a query instance by setting a value in the

DSQOAUTH keyword in the query command procedure or on the START command. The values you

can specify are:

*LIBCRTAUT

The authority for the object is the same as the value specified on the CRTAUT parameter of the

library in which the object is being created. If the CRTAUT parameter is changed, the new

value will not affect the authority of existing objects.

*CHANGE

Change authority allows other users to perform all operations on the object except those

limited to the owner or controlled by object existence authority and object management

authority. A user can change or use the query object in any way, except for deleting it or

transferring it to a new owner.

*ALL All authority allows other users to perform all operations on the object except those limited to

the owner or controlled by authorization list management rights. A user can do anything with

the query object (including erasing it), except for transferring it to a new owner.

*EXCLUDE

Exclude authority prevents other users from doing anything with the query object. Unless

given specific types of authority, no user except its owner can use the query object.

*USE Use authority allows other users to run, export, or print the query object, but prevents them

from importing it or saving to it.

authorization list name

If you specify the name of an authorization list, its authority is used to control the users ability

to use a query object. For more information, see the Security Guide.
If you do not specify an authority through the query command procedure, other users will have

*EXCLUDE access to the query object.

v DSQSDBNM is the remote database to which all SQL operations initiated by query management

during the query instance are directed. If you do not specify this keyword on either the START or the

query command procedure, the connection associated with the query instance is the CURRENT

SERVER at the time of the START command. Values that you can specify are:

*CURRENT

The query instance inherits the connection associated with the CURRENT SERVER. The

DSQSDBNM keyword is set to the remote database name (rdbname) of the CURRENT

SERVER.

Note: The Relational Database Directory contains the names of all the remote and local

databases that the system is capable of accessing.
If the local database name is not in the Relational Database Directory, the option will be set to

*NONE. The default value is *CURRENT.

*NONE

The connection will be made to the local database manager. An entry for the local database

does not need to exist in the Relational Database Directory.

rdbname

This stands for remote database name. This is how a database that can be accessed using

Distributed Relational Database Architecture™ (DRDA) is identified. A rdbname can be up to 18

characters in length. It must consist of the uppercase characters (A-Z), numerics (0-9), or

underscores (_). The first character must be a letter and an entry for the rdbname must be in

the Relational Database Directory.

 The keyword value that is set for DSQSDBNM on the START command overrides any keyword

value set for DSQSDBNM by a query command procedure.

START

Chapter 4. Commands in query management 53

v DSQUSER and DSQPASSWORD specify the user identification and password to be used with the

remote database if you specify a remote database name with the DSQSDBNM keyword. If you specify

either of these keywords, you must specify both of them. If you do not specify these keywords, the

default user identification is *CURRENT and the default password is *NONE. Neither the keyword

value for DSQUSER nor the keyword value for DSQPASSWORD can be set by a query command

procedure. The DSQPASSWORD variable and value are not stored in the global variable pool.

v DSQCMTLV is the keyword used to specify the level of commitment control to be used during the

session. The default value is NONE. If you set this keyword to any other value, query management

runs all SQL statements under commitment control. If you run the session with a commitment level

other than NONE, you can run COMMIT and ROLLBACK SQL statements. The ERASE TABLE CPI

command will have the commitment control level associated with the DSQCMTLV value of the query

instance.

Note: SAVE DATA AS will always have a commitment control level of NONE.

You can specify the following for DSQCMTLV:

NONE

Commitment control is not used. This is the same as *NONE.

UR Only the updated rows are locked until the end of the transaction. This is the same as *CHG.

CS Any row that a cursor is positioned on is locked until the cursor position changes. The

updated rows are locked until the end of the transaction. This is the same as *CS.

RS All selected rows are locked until the end of the transaction. The updated rows are locked until

the end of the transaction. This is the same as *ALL.

RR All selected rows are locked until the unit of work (UOW) completes. In addition to any

exclusive locks, an application process running at isolation level RR (serializable) acquires at

least share locks on all the rows it reads. The locking completely isolates the application

process from concurrent application processes. This assures that repeated queries within a unit

of work give the same results.
The keyword value set for DSQCMTLV on the START command overrides any DSQCMTLV value set

by the query command procedure.

v DSQRDBCNNMTH indicates the connection management method to use during the session. The

default value is *DUW. You can specify the following for DSQRDBCNNMTH:

*DUW

Connections to several relational databases are allowed. This is the default for

DSQRDBCNNMTH. Consecutive START or CONNECT commands to additional relational

databases do not disconnect previous connections. You can use SET CONNECTION to switch

between connections. Read-only connections may result. Consecutive CONNECT commands to

the same database fail. You can, however, issue consecutive START commands to the same

database.

*RUW Only one connection to a relational database is allowed. Consecutive START or CONNECT

commands to additional relational databases disconnect the previous connections before

establishing the new one. Consecutive START or CONNECT commands to the same database,

do not change the current connection.

Note: All previous connections are disconnected. For more information, see “CONNECT in

query management” on page 24.
v DSQCONFIRM is the keyword to specify the default value for the DB2 for i5/OS query management

commands that have a CONFIRM parameter. For example, if the CONFIRM keyword is not specified

on an ERASE QUERY command, and DSQCONFIRM was set to NO, then no confirmation processing

takes place. You can specify the following for DSQCONFIRM:

YES If no CONFIRM keyword is specified on the ERASE, IMPORT, or EXPORT command,

confirmation processing occurs.

START

54 System i: Query Management Programming

NO In this case, no confirmation processing occurs.
 vallen

Length of program storage that is to contain the keyword value.

 values

Program storage area that is to contain the keyword value.

 valtype

Data type of the storage area that is to contain the keyword value.

Examples: START in query management

See Chapter 7, “Callable interface in query management” for examples of programs that use the START

command.

START query command procedure in query management

Use the DSQSCMD keyword on the START command to specify the name of the query command

procedure that is run as part of query management initialization. The procedure can also be used to set

application-specific user variables.

The query command procedure used on the DSQSCMD parameter is the only place where users can set

DSQ variables, other than the START command itself.

Note: The DSQ keywords specified on the START command will always override the same DSQ values

set in DSQSCMD. For example:

START(DSQSCMD=MYPROC DSQSNAME=*SAA...

 MYPROC

 SET GLOBAL(DSQSNAME=*SYS...

would result in DSQSNAME=*SAA.

The following DSQ variables can be set using the query command procedure:

v DSQSMODE

v DSQSRUN

v DSQOAUTH

v DSQSNAME

v DSQCONFIRM

v DSQAPRNM

v DSQSDBNM

v DSQCMTLV

v DSQRDBCNNMTH

v DSQSCNVT

Any other DSQ variables set in the query command procedure are ignored. Defaults are applied to all

DSQ variables that are not set in the user-supplied procedure. The possible parameters for the DSQ

variables that users can set using the query command procedure are:

DSQSMODE = INTERACTIVE | BATCH

This parameter indicates the mode of query management operation when subsequent commands

are issued. Valid options are:

INTERACTIVE

Allows displays to be shown during query management processing. Any reports generated as a

START

Chapter 4. Commands in query management 55

result of a RUN QUERY command are shown on your display. Any confirmation messages

requiring a response are shown on your display, and you can then reply to the messages.

BATCH

Does not show displays during query management processing. Any messages requiring responses

result in errors. All other messages are sent to the job log.

DSQSRUN = query procedure name

The query procedure name names the query management procedure to run after initialization is

started.

 If the DSQSRUN parameter is not specified on the START command and the DSQSRUN variable

is not set in the query command procedure, no initialization procedure is run.

DSQOAUTH = *CHANGE, *EXCLUDE, *USE, *ALL, or authorization list name

If DSQOAUTH is not set by the query command procedure, it defaults to *EXCLUDE.

DSQSNAME = *SYS | *SAA

This parameter specifies the naming convention to be used when processing query management

commands.

*SYS Use the format library/object to specify any qualified names in commands or query management

procedures.

*SAA The SQL naming convention is used. Use the format database.object to specify any qualified

names in commands or query management procedures.

 If the DSQSNAME parameter is not specified on the START command and the DSQSNAME

variable is not set in the query command procedure, the naming convention defaults to *SAA.

DSQCONFIRM = YES | NO

This keyword specifies the default to be taken when CONFIRM is not specified on a command

that allows for confirmation processing (IMPORT, EXPORT, and SAVE DATA). If this DSQ

variable is not specified in the query command procedure, the default is DSQCONFIRM = YES.

DSQSDBNM = *CURRENT | *NONE | remote database name

This keyword specifies the remote database to which all SQL operations initiated by query

management during the query instance are directed. If you do not specify this keyword on either

the START or the query command procedure, the connection associated with the query instance is

the CURRENT SERVER at the time of the START command.

DSQCMTLV = NONE | UR | CS | RS | RR

This keyword is used to specify the level of commitment control to be used during the session.

The default value is NONE. If you set this keyword to any other value, query management runs

all SQL statements under commitment control. If you run the session with a commitment level

other than NONE, you can run COMMIT and ROLLBACK SQL statements. The ERASE TABLE

CPI command has the commitment control level associated with the DSQCMTLV value of the

query instance.

DSQSCNVT = YES | NO | ONLY

This keyword indicates whether query and form information can be derived from an IBM Query

for i5/OS definition (QRYDFN) if query management object information is not available.

Specifying NO for this keyword causes the command to end with an error if the query or form

specified on an EXPORT, PRINT, or RUN command is not found.

 Specify YES for this keyword to request query management to attempt to use IBM Query for

i5/OS information if the query or form specified on an EXPORT, PRINT, or RUN command is not

found. If this keyword is not specified on the START command, it defaults to DSQSCNVT = NO.

 If you specify ONLY for this keyword, the command ends with an error if a QRYDFN object

cannot be found, whether or not there is a query management object of the appropriate type.

START

56 System i: Query Management Programming

Example: Command procedure in query management

The following is an example of the contents of the default procedure included with the product:

 ’SET GLOBAL (DSQSMODE=BATCH’

 ’SET GLOBAL (DSQOAUTH=*EXCLUDE’

 ’SET GLOBAL (DSQSNAME=*SAA’

 ’SET GLOBAL (DSQCONFIRM=YES’

CL commands in query management

The following control language (CL) commands are commonly used when working with query

management and writing applications to create query management reports. For further information on

using these CL commands, see the Control language topic in the i5/OS Information Center.

ANZQRY (Analyze Query) in query management

The Analyze Query (ANZQRY) command allows you to analyze an IBM Query for i5/OS definition

(QRYDFN) object for query management conversion problems. Query management returns diagnostic

messages about potential differences between IBM Query for i5/OS and query management use of query

and form information derived from the analyzed QRYDFN object. A completion message shows the

highest severity of the problems that are found.

CRTQMFORM (Create Query Management Form) in query management

The Create Query Management Form (CRTQMFORM) command allows you to create a query

management form from a specified source. The form defines how to format DATA (from running a

query) when printing or displaying a report. Form information is encoded in source file member records.

CRTQMQRY (Create Query Management Query) in query management

The Create Query Management Query (CRTQMQRY) command allows you to create a query from a

specified source. A query is any single SQL statement that can contain variable substitution values. It can

be spread over multiple records in a source file member.

DLTQMFORM (Delete Query Management Form) in query management

The Delete Query Management Form (DLTQMFORM) command allows you to delete an existing query

management form from a library. A generic form name can be used to delete multiple forms from a

library or list of libraries.

DLTQMQRY (Delete Query Management Query) in query management

The Delete Query Management Query (DLTQMQRY) command allows you to delete an existing query

management query from a library. A generic query name can be used to delete multiple queries from a

library or list of libraries.

RTVQMFORM (Retrieve Query Management Form) in query

management

The Retrieve Query Management Form (RTVQMFORM) command allows you to retrieve encoded form

source records from a query management form (QMFORM) object. The source records are placed into a

source file member that can be edited.

You can also retrieve form source records from a QRYDFN object when the specified QMFORM does not

exist.

START

Chapter 4. Commands in query management 57

RTVQMQRY (Retrieve Query Management Query) in query

management

The Retrieve Query Management Query (RTVQMQRY) command allows you to retrieve an SQL source

statement from the query management query (QMQRY) object. The source records are placed into a

source file member that can be edited.

You can also retrieve query source records from a QRYDFN object when the specified QMQRY object

does not exist.

STRQMPRC (Start Query Management Procedure)

The Start Query Management Procedure (STRQMPRC) command allows you to run the query

management procedure that was saved as a member in a source file.

STRQMQRY (Start Query Management Query)

The Start Query Management Query (STRQMQRY) command allows you to run an existing query

management query. The query runs the SQL statement saved in the query management query. The result

set collected from running an SQL SELECT statement can be displayed, printed, or stored in another

database file.

You can also derive the SQL statement from a QRYDFN object when the specified QMQRY object does

not exist.

WRKQMFORM (Work with Query Management Forms)

The Work with Query Management Forms (WRKQMFORM) command shows a list of query management

forms from a user-specified subset of query management form names. Several query management

form-related functions are available from this list.

WRKQMQRY (Work with Query Management Queries)

The Work with Management Queries (WRKQMQRY) command shows a list of query management

queries from a user-specified subset of query management query names. Several query-related functions

in query management are available from this list.

58 System i: Query Management Programming

Chapter 5. Procedures in query management

You may find yourself creating reports over and over again that use the same query management

commands. If you do, consider processing these steps together by creating a procedure. A procedure

allows you to process a set of query management commands with a single RUN command.

Procedures also allow flexibility in your application. Your application can be written to run a named

procedure. At any time, the procedure can be updated or tailored to fit a new situation, without requiring

you to change your application program.

Creating procedures in query management

A procedure allows you to run a set of query management CPI commands with a single RUN command.

You can create a procedure for a common program section and then call that procedure with a single

command rather than a series of commands.

Keep in mind the following rules when creating a procedure:

v Procedures are source file members.

v Procedures can contain query management commands and blank lines. (Blank lines have no effect on

the processing of the commands.) They may also optionally contain an H record and a comment V

record. The comment record can be used as a text descriptor when importing a procedure.

v Each query management command must be in uppercase English letters.

v All commands must be surrounded by apostrophes or quotation marks. If the command contains a

quotation mark, the internal quotation marks are represented by two successive apostrophes ('') or

quotation marks (“”), as shown in Example 2. See Appendix C, “Use of quotation marks and

apostrophes when setting global variables in query management” for additional information.

v Procedures can contain a RUN command that runs another procedure or query.

v A single command is limited to 79 characters on a line.

v The width of a procedure line is limited to the source file record width.

v The width of a query command on a procedure line after procedure parsing is done is limited to 256

characters. Procedure parsing involves stripping leading and trailing blanks and reducing apostrophes

and quotation marks.

Example 1 of creating procedures in query management

/*H QM4 01 P 01 E V W E R 01 03 90/3/19 14:27 */

/*V 1001 014 Monthly report */

/* This produces the monthly reports. */

’RUN QUERY A’ /* PAYROLL */

’PRINT REPORT (PRINTER=PRT01’

’RUN QUERY B’ /* ACCTS RECEIVABLE */

’PRINT REPORT (PRINTER=PRT01’

The format of the H and V records are described in Chapter 8, “Exported and imported objects in query

management.” The text on the V record, Monthly report, is used on the IMPORT PROC command to set

the text description on the source file member.

Example 2 of creating procedures in query management

'SAVE DATA AS LASTWKDATA (COMMENT=’Last weeks’data’

'IMPORT FORM REPT4 FROM MYLIB/FORMS(REPT4) (CONFIRM=YES'

'SET GLOBAL (TBLENAME=MYFILE'

© Copyright IBM Corp. 1998, 2008 59

'SET GLOBAL (CMPVAL2=''Joe A. Customer'''

'RUN QUERY REPT4QRY (FORM=REPT4'

'SAVE DATA AS LASTWKDATA'

'PRINT REPORT'

Steps for creating a procedure in query management

To create a procedure called MYPROC, you would:

1. Edit the source member MYPROC and add information like the following:

/*H QM4 01 P 01 E V W E R 01 03 90/3/19 14:27 */

/*V 1001 014 Monthly report */

/* This produces the monthly reports. */

’RUN QUERY A’ /* PAYROLL */

’PRINT REPORT (PRINTER=PRT01’

’RUN QUERY B’ /* ACCTS RECEIVABLE */

’PRINT REPORT (PRINTER=PRT01’

2. Save the member MYPROC.

The procedure is now ready to run.

The following rules apply when you use procedures:

v You can nest up to 12 procedures inside another, but each procedure takes on the characteristics of the

one it calls. Therefore, a PRINT command in a procedure which has just run a RUN QUERY command

prints the data from the RUN QUERY command.

v Recursion is not allowed. That is, a procedure that contains a RUN PROC of itself is not allowed.

v The query command in a procedure must be delimited by quotation marks (″) or apostrophes, (’).

v Since query management procedures do not have high-level language constructs, the GET command is

not functional. A GET command within a procedure sends an informational message to the job log. The

message contains the variable name and the value.

v Query management treats all variable values on a SET command as character strings. Therefore, it is

not possible to set an integer variable within a procedure.

v A procedure can optionally contain an H record with a comment V record immediately following.

v A procedure can optionally contain comments. Comments are used to describe the action being taken

in the procedure. Comments cannot span multiple lines or be nested within other comments.

Comments are delimited with a /* at the start of the comment, and an */ at the end of the comment.

On the i5/OS operating system, the processing of each command depends on the mode for the particular

instance in which the procedure is being processed.

The query management procedure is a member in a source physical file. Query management allows a

specific member to be identified on the RUN PROC, IMPORT PROC, EXPORT PROC, PRINT PROC, and

ERASE PROC commands. This is done by allowing members to be given as part of the query object

name. The member name must follow the query object name and be delimited by a parenthesis with no

intervening blanks.

If you do not specify a member as part of the object name, it is always assumed to be the first member of

the file. If you issue an ERASE PROC and more than one member exists only the first member will be

deleted. If you do not specify a member, and it is created as part of the IMPORT PROC processing, it is

given the name of the procedure file.

User interaction in procedures in query management

Interaction with a query user depends on the interactive state of query management. This state is

controlled by the startup parameter DSQSMODE on the START command (see “START in query

management” on page 51). If you allow the interactive state, there are further considerations when using

60 System i: Query Management Programming

a procedure. For example, specifying CONFIRM=YES on the ERASE command or DISPLAY=YES on the

IMPORT command could cause the procedure to fail.

When a procedure that contains several queries is run, you will see a formatted report display as each

query processes. You can then page the report. An exit from the report returns control to the procedure

and causes the next statement to process.

Procedure interaction in query management

Refer to command descriptions in Chapter 4, “Commands in query management” to understand what

will happen during the processing of each command depending on the mode the procedure is being

processed in.

v Procedures are allowed to be called from inside another procedure; this practice is called nesting.

Procedures located inside other procedures will use the parameters specified by the first procedure.

Therefore, a PRINT command processed in a procedure which has just run a RUN QUERY command

will print the data from the RUN QUERY command.

v A nesting level of 12 is allowed by query management.

v Recursion is not allowed. For example, PROCEDURE A cannot contain the command RUN PROC A.

v The GET command is not functional within a procedure. A GET command within a procedure will

result in an informational message sent to the job log that contains the variable name and the value.

v Query management treats all variable values on a SET command as character strings.

Procedure objects in query management

The query procedure is a source physical file. Query management allows a specific member to be

specified on the RUN PROC, IMPORT PROC, EXPORT PROC, PRINT PROC, and ERASE PROC

commands by allowing members to be given as part of the query object name. The member name must

follow the query object name and be delimited by a parenthesis with no intervening blanks. The

following examples show how each of the commands can be changed to point query management to a

specific member:

RUN PROC MYLIB/MYPROCS(MYMEMBER)

PRINT PROC MYLIB/MYPROCS(MYMEMBER)

IMPORT PROC MYPROCS(MYMEMBER) FROM QQMQRYSRC

EXPORT PROC MYLIB/MYPROCS(MYMEMBER) TO QQMQRYSRC(MYMEMBER)

If a member is not specified as part of the object name, it is always assumed to be the first member of the

file. If an ERASE PROC is issued and more than one member exists, only the first member will be

deleted. If a member is not specified and is to be created as part of the IMPORT PROC processing, it will

be created with the same name as the procedure file name.

Query management processes the entire source file when running a RUN PROC or PRINT PROC

command. If a procedure file is created on import or export, it is created with a data length of 79

characters. Truncation occurs on any import or export from a file with a longer record width.

A query procedure can be run by:

1. Issuing the STRQMPRC CL command

2. Issuing a RUN PROC query command through the Common Programming Interface of query

management

3. Using the RUN PROC option on the query statement menu in DB2 Query Manager

4. Specifying a procedure name for the DSQSCMD keyword on the query management Common

Programming Interface START command

Chapter 5. Procedures in query management 61

Handling procedure errors in query management

Whenever an error with severity of FAILURE occurs, the processing of the procedure will be stopped and

the completion code of the procedure will reflect the error. All messages encountered during the

processing of the procedure will be queued to the job log and a summary message will be returned in the

communications area.

Categories of procedure errors in query management

The following error categories are possible in query management procedures:

v Command not allowed in query management procedure.

v Command in query management procedure not valid.

v String in query management procedure not valid.

v Recursion not allowed in query management procedure.

v Maximum procedure nesting level exceeded. A nesting level of 15 is allowed.

62 System i: Query Management Programming

Chapter 6. Report forms in query management

This chapter explains how to create a form and describes query management reporting capabilities. You

produce reports by formatting the results of a query using the formatting information that is specified in

the form.

How applications can use the form in query management

An application can create or alter a form by directly changing or creating the exported form.

For information on how to create a form, see the next section, Creating forms in query management.

Creating forms in query management

You can create reports by formatting the results of a query using the information that is specified in a

form. An application can create or alter a form by directly changing or creating the exported form.

You can use an application to export an existing form from query management, change it, import the

form, and then format a report. You do not have to export the form every time. An application can access

and change an existing exported form, and then import it into query management for reporting.

You can also import a form from a source that allows certain form fields to be filled by default. It is

possible to use only the header (H) record followed by one T and one R record for each column that is

formatted. The remaining form fields are filled in by query management default values. Query

management forms can also be created using the DB2 Query Manager licensed program.

Creating a default form in query management

1. Create a template for generating an external form object by creating a source member DEFAULT in

the source file TESTFORM in library MYLIB1 with a record length of 162 characters. To do this,

At an i5/OS command line, type:

CRTSRCPF MYLIB1/TESTFORM RCDLEN(162) MBR(DEFAULT)

Press Enter.

2. Edit the member named DEFAULT and add the following information.

H QM4 05 F 03 E V W E R 01 03 90/12/31 09:21

T 1110 001 000

R

E

When the default form is exported later, the date and time are made current.

3. Save the member DEFAULT.

4. To create a default form object in MYLIB1, use the Create Query Management Form (CRTQMFORM)

command to import the source file member you just created. At an i5/OS command line, type:

CRTQMFORM QMFORM(MYLIB1/DEFAULT)

SRCFILE(MYLIB1/TESTFORM) SRCMBR(DEFAULT)

Press Enter.

5. Use the Retrieve Query Management Form (RTVQMFORM) CL command to export the query

management form created as a result of the CRTQMFORM command. The easiest way to do this is:

a. Press F9 to retrieve the previous command.

b. Replace CRT with RTV.

The entire command is then:

RTVQMFORM QMFORM(MYLIB1/DEFAULT)

SRCFILE(MYLIB1/TESTFORM) SRCMBR(DEFAULT)

© Copyright IBM Corp. 1998, 2008 63

c. Press Enter.

The member named DEFAULT now contains a complete form with default values for all form attributes

except those set at run time. You can then edit the member DEFAULT to change field attributes and add

more columns.

Defaults are provided for information that is not specified. Some defaults are provided when the form is

imported. Other defaults, such as Data type and Column heading, are provided at run time and depend

on the resulting data of the processed query.

Keywords encoded into the form should be in uppercase English. Text fields (headings, footings, and

final text) can be in upper and lowercase letters.

The form object fields are commonly grouped by the following functional categories:

v Break

v Column

v Final

v Options

v Page

Formatting terminology in query management

In order to understand all of the form options, the following two figures, Figure 8 and Figure 9, show you

the effect of some of the form options on a formatted report.

 “Edited Data” is information from the database that displays according to the relevant edit code.

Figure 8. Basic parts of a report

64 System i: Query Management Programming

The form object contains fields that describe the report. Query management supports up to 255 columns

of information. Query management has a limit of 32 KB of available data from the database for any one

row. Defaults are provided for all the fields except Usage. Defaults depend on the resulting data of the

processed query.

Keywords used in the form must be in uppercase English. Text fields (headings, footings, and final text)

can be in uppercase and lowercase letters.

DBCS data in query management

See Appendix A, “DBCS data in query management” for additional information about using double-byte

character set (DBCS) data in a form.

Column Fields in query management

The following topics are covered in Column Fields in query management:

“Data type for column in query management” on page 66

“Headings for column in query management” on page 66

“Usage for column in query management” on page 67

“Indent for column in query management” on page 68

“Width for column in query management” on page 69

“Datatype for column in query management” on page 69

“Edit codes for column in query management” on page 69

“Seq for column in query management” on page 71

“Runtime defaults for column in query management” on page 71

Figure 9. Basic parts of a report with one level of control break

Chapter 6. Report forms in query management 65

Data type for column in query management

This field represents the data type for a column in the report. Possible values are NUMERIC, CHAR,

GRAPHIC, and DATE/TIME. i5/OS does not support GRAPHIC and DATE/TIME. Each column in the

DB2 for i5/OS query management report is described by a set of field values. The values for the nth

column in the form are applied to the nth column selected by the query with which it is used. The

following sections describe the fields available for use in defining Column Fields. See Appendix A,

“DBCS data in query management” for additional information about using double-byte character set

(DBCS) data in Column Fields.

Table 3 shows the defaults and possible values for the attributes on Column Fields.

 Table 3. Default and possible values for Column Fields

Attribute Default Possible values

Column heading Column heading in table 1 - 62 characters with up to 8 underscores

Usage — AVG, MIN, MAX, SUM, COUNT, BREAK1 - BREAK6,

AVERAGE, MINIMUM, MAXIMUM, OMIT

Indent 2 0 to 999

Width Depends on data type used. 1 to 32,767 SBCS

Datatype Data type of field in table CHAR, NUMERIC

Edit code– numeric Edit code of field in table E, D, I, J, K, L, P

Edit code– character C C, CW, CT

Seq Column number 1 to 999

Edit code– date, time Run time TDY, TDM, TDD, TDYA, TOMA, TDDA, TTS, TTC,

TTA, TTAN, TTU, TSI

Headings for column in query management

This field represents the heading for a column in the report.

A heading can be up to 62 characters long.

You can embed underscore characters in the heading and use them to indicate a new line for

multiple-line headings. Query management processes a maximum of eight underscores in a heading.

Leading and trailing underscores produce blank segments before and after the column headings.

For example, a column heading of “AMOUNT_LAST_INCREASE” results in the following 3-line column

heading:

 AMOUNT

 LAST

 INCREASE

Consecutive underscores (in any position) will introduce blank lines.

Note that the underscore rule prevents you from seeing an underscore character in a column heading.

The only exception to this rule is when more than eight underscores appear, in which case the extra

underscores print as part of the last line of the heading.

Whenever you specify multiple-line headings, query management automatically centers the smaller lines

within the space of the longest line. Headings for character data are automatically left-justified and

headings for numeric data are automatically right-justified. Data justification takes place within the width

of the column. The width specification must reflect the length of the longest segment of this field.

Column Fields

66 System i: Query Management Programming

If the number of characters in this field is greater than the number of characters specified in width, then

the field truncates to the width specified for the column.

If you do not specify a column heading, query management provides a runtime default. You cannot cause

a column to be shown without a heading by importing a form with a blank heading unless the database

definition for the column indicates it should not have a column heading.

Usage for column in query management

This field determines use of the column in the detail line of the formatted report result.

There can be only one usage specified for each column. If you want a column to have more than one

usage, you must select the column multiple times in the query and define a usage code for each column

in the form.

The usage options are:

[blank]

Column to be included in the report.

OMIT

Column to be excluded from the report.

AVERAGE, COUNT, FIRST, LAST, MAXIMUM, MINIMUM, SUM

These keywords name aggregating usages that summarize the data in a column. The result of the

usage is given at a break or final summary.

 Usage code Definition

AVERAGE (or AVG) The average of the values in the column.

COUNT The count of the non-null values in the column.

FIRST The first value in the column.

LAST The last value in the column.

MAXIMUM (or MAX) The maximum value in the column.

MINIMUM (or MIN) The minimum value in the column.

SUM The sum of the non-null values in the column.

AVERAGE and SUM work only on numeric data; COUNT, FIRST, LAST, MAXIMUM, and

MINIMUM work with character data as well as with numeric data.

 When you compare characters using MAXIMUM and MINIMUM, the shorter string is padded with

blanks and the strings are compared based on the internal binary codes. For example, the character

string “ab” is greater than the character string “aaa”. There is no special processing on a character by

character basis. When you use MAXIMUM and MINIMUM on applications that are portable from

one system to another, be aware that the collating sequences for the different machines might not be

the same. Because EBCDIC and ASCII do not collate characters identically, using MAXIMUM or

MINIMUM on different systems might produce different results.

 The following rules apply to the aggregating usages AVERAGE, COUNT, FIRST, LAST, MAXIMUM,

MINIMUM, and SUM.

1. If aggregation overflow occurs, the value in the field is represented by “>>>>” for the width of

the column.

2. If the aggregation cannot be displayed due to the column width being too small, the value in the

field is represented by “*****” for the width of the column.

Column Fields

Chapter 6. Report forms in query management 67

BREAK1

BREAK1 is the value used to specify a column as the first level, or highest, control break. A control

break is the break point where the column value changes.

 For example, if a set of rows of employees is ordered by department number and job title, a BREAK1

can be used to total the salaries of all the employees in the department, and a BREAK2 can be used

to total the salaries by job title within the department. Each time a row with a different job title is

read, a BREAK2 generates and displays the appropriate data and totals. Each time a row with a

different department number is read, a BREAK2 and BREAK1 generate, and both sets of appropriate

data display.

 Before each break summary displays, a line is placed in the report consisting of a row of hyphens

(“–”) under any displayed column with an aggregation usage. You can suppress this line via an

option in the “Options” part of the form. A blank line is normally placed after each set of break data.

 The aggregation usages (AVERAGE, COUNT, FIRST, LAST, MAXIMUM, MINIMUM, SUM) may be

used at control breaks. For example, summary data appears as subtotals of all columns with a usage

of SUM, or an average of the columns with a usage of AVERAGE.

 The data printed as part of the break is determined by the break definition, described later in this

section.

 The break level numbers are not required to be consecutive. In this respect, control break numbers are

not absolute; you could specify control breaks 2, 4, and 6, without specifying 1, 3, and 5. However,

control break text assignments continue to be absolute; text for control break 2 is always associated

with control break number 2—not with the second control break.

 You can assign multiple columns to the same BREAKn value. When this occurs and query

management needs to determine control breaks, query management considers all columns having the

same control break level as a single concatenated column. This is particularly useful when

LAST_NAME and FIRST_NAME are stored as separate columns. Likewise, it is needed when

MONTH, DAY, and YEAR are each separate columns.

 When using a control break, the data in the column should be ordered. For the data to be in order,

the SELECT that produces the report must use ORDER BY.

 There is no automatic reordering of columns due to break specifications, but break text is usually

displayed to the left of any summary columns. Therefore, IBM recommends using the “Seq” value to

display the break columns to the left, and the aggregated columns to the right, on the report.

BREAK2

BREAK2 is the usage value used to specify a column as the second level control break. A BREAK2

automatically generates whenever either the columns upon which it is defined changes, or when

there is a BREAK1 generated. Note that a BREAK1 causes a BREAK2, but a BREAK2 does not cause a

BREAK1.

BREAK3 through BREAK6

BREAK3 through BREAK6 name control columns for breaks at levels 3 through 6.

Indent for column in query management

This field represents the relative location of the column within a row. Its units are the number of blank

characters between the column and either:

v The right edge of the previous column.

v The left edge of the screen or paper.

You can set Indent to n, where 0 <= n <= 999. In the default format, query management initializes Indent

to 2.

Column Fields

68 System i: Query Management Programming

Width for column in query management

This is the column’s output width. It specifies how many character spaces to reserve for displaying the

column heading and data. Names that are wider than Width are truncated. Query management defines

the Width field as numerics only. The maximum width is 32767 single-byte characters. If the length of the

value to be displayed exceeds the width of the column, the value is either replaced with a row of

asterisks (****) if it is numeric data, or truncated at the right if it is character data. The desired result can

be obtained by changing the width and displaying the report again. Date, time, or timestamp data is

treated like character data in a formatted report. The following also apply:

v The column heading and column detail are left aligned in the column.

v If the width of the column specified in the form is less than the formatted width of the date, time, or

timestamp; the date, time, or timestamp is truncated on the right.

v If the width of the column specified in the form is greater than the formatted width of the date, time,

or timestamp; the date, time, or timestamp is padded on the right with blanks.

v A null date, time, or timestamp field is formatted as a left-aligned dash (-).

If you do not specify a width value, query management provides a runtime default.

Datatype for column in query management

This field represents the type of data that is contained in the corresponding column in the queried table.

The Datatype options are the following:

CHARACTER

The data in the column in the table is character.

NUMERIC

The data in the column in the table is numeric. It can be binary, packed, zoned, or floating point.

DATE, TIME, TIMEST

The data in the column is date, time, or timestamp.

GRAPHIC

The data in the column is DBCS-graphic (see Appendix A, “DBCS data in query management”).

Edit codes for column in query management

Edit codes are used to format character and numeric data for display. Table 4 shows the edit codes for

date data.

Note: The x’s show where to specify the date punctuation character value. This can be any special

character, including a blank, but cannot be a letter or a number. For example, a dash (-) can be

used.

 Table 4. Query management CPI date edit codes

Edit code Format Example

TDYx YYYYxMMxDD TDY/ ==> 1987/01/31

TDMx MMxDDxYYYY TDM- ==> 01-31-1987

TDDx DDxMMxYYYY TDD ==> 31 01 1987

TDYAx YYxMMxDD TDYA/ ==> 87/01/31

TDMAx MMxDDxYY TDMA- ==> 01-31-87

TDDAx DDxMMxYY TDDA. ==> 31.01.87

Table 5 shows the edit codes for time data.

 Table 5. Query management CPI time edit codes

Edit code Format Note Example

TTSx HHxMMxSS Includes seconds TTS. ==> 13.42.35

Column Fields

Chapter 6. Report forms in query management 69

Table 5. Query management CPI time edit codes (continued)

Edit code Format Note Example

TTCx HHxMMxSS Includes seconds, 12 hr. TTC: ==> 01:42:35

TTAx HHxMM Abbreviated (no seconds) TTA, ==> 13,42

TTAN HHMM Abbreviated, no delimiter TTAN ==> 1342

TTUx HHxMM AM or PM USA style TTU: ==> 01:42 PM

Table 6 shows the only edit code for timestamp data. To display all of a timestamp format, except

microseconds, the width field must be at least 19. If the width is less than 26, the trailing digits are

truncated.

 Table 6. Query management CPI timestamp edit code

Edit code Format Example

TSI yyyy-mm-dd-hh.mm.ss.nnnnnn 1987-01-21-13.42.19.123456

Below are the edit codes for character data. See Appendix A, “DBCS data in query management” for

DBCS-graphic edit codes.

C Makes no change in the display of a value. If the value cannot fit onto one line in the column, query

management truncates the text according to the width of the column. C is the default for character

data.

CW

Makes no change in the display of a value, but if the value cannot fit on one line in the column,

query management wraps the text according to the width of the column. That is, instead of

truncating the data at the end of the column, query management puts as much data as possible on

one line in the column and then continues the data on the next line in the column.

 The CW edit code can be used on columns of mixed DBCS and single-byte character data.

CT

Makes no change in the display of a value. But if the value cannot fit onto one line in the column,

query management wraps the column according to the text in the column. That is, instead of

truncating the data at the end of the column, query management fits as much data as possible on a

line, interrupts the line when it finds a blank and continues the data on the next line. If a string of

data is too long to fit into the column and does not contain a blank, query management wraps the

data by width until the point where it finds a blank and can therefore continue wrapping the text.

 The CT edit code can be used on columns of mixed DBCS and single-byte characters. Query

management interrupts the line when it finds a single-byte or double-byte blank.

Below are the edit codes for numeric data:

E Displays numbers in scientific notation. For example, the number -1234.56789 displays as -1.234E+03.

As many digits as can display are placed in the report, up to a maximum of 15. One space is always

reserved for a leading sign, although it does not display for positive numbers. There is always a sign

and at least two digits after the E. Up to three digits will display.

D, I, J, K, L, and P

Displays numbers in decimal notation with different combinations of leading zeros, negative symbols,

thousands separators, currency symbols, and percent signs. Examples are in the following table.

 Each code may be followed by a number (from 0 to 31) that tells how many places to allow after the

decimal point. If no number is specified, zero places after the decimal point are assumed. Numbers

that have more decimal places than fit into the allowed space are rounded; numbers with fewer

decimal places are padded with zeros.

Figure 10 on page 71 shows how the numeric edit codes format the number -1234567.885. The example

assumes that

Column Fields

70 System i: Query Management Programming

v Width is 15.

v The value of the decimal character is a period (.).

v The value of the thousand separator is a comma (,).

v Normal rounding is used (1-4 round down, 5-9 round up).

v The currency symbol for D2 is the dollar sign ($) with left position.

v The negative indicator is a minus sign (-). There is no trailing negative indicator.

The above parameters may be established in a system or user profile, depending on the operating

system. If you move your application to another environment, you should ensure that the parameters

are equivalent across the environments.

 If you do not specify an edit value, query management provides a runtime default.

Seq for column in query management

You can specify “Seq” to order the columns in the generated report.

The following rules apply to evaluating “Seq” values:

v Defaults to n for the nth column in the form.

v Any number from 1 to 999.

v Numbers need not be consecutive.

v Columns with the same “Seq” number appear in the report in the same order that they appear in the

form.

Runtime defaults for column in query management

Query management uses system-provided defaults for Datatype, Column heading, Edit, and Width

values when columns of data extracted by running a query need to be formatted for a report. This

condition occurs when the following situations occur:

v You did not specify a form or you specified *SYSDFT to refer to the default form for the extracted data.

v The specified form does not contain the information needed to format the report or the form was

imported with warnings about blank values or missing column table fields.

Note: If you use the SAVE DATA AS command with a query that contains date or time columns, the

default information associated with the date and time fields is the information associated with the

user, not the default information associated with the original table column that was queried.

 Edit Lead Negative Thousands Currency Percent Display of

 Code Zeros Sign Separators Symbol Sign -1234567.885

 ---- ----- -------- ---------- -------- ------- ------------

 E No Yes No No No -1.23456789E+06

 D2 No Yes Yes Yes No -$1,234,567.89

 I3 Yes Yes No No No -0001234567.885

 J2 Yes No No No No 000001234567.89

 K3 No Yes Yes No No -1,234,567.885

 L2 No Yes No No No -1234567.89

 P2 No Yes Yes No Yes -1,234,567.89%

Figure 10. Use of edit codes

Column Fields

Chapter 6. Report forms in query management 71

Heading defaults for column in query management

You can establish column heading defaults for file data when you define a field to the system. Use field

names unless other text is specified when you use interactive data definition utility (IDDU).

When a default report is built using a form that does not contain explicit column headings, the column

headings from the database are used. If:

v There are no column headings in the database, the selected name becomes the default column heading.

v The query selects the column by the column name, the column name is the default column heading.

v The query selects the column by the system column name, the system column name is the default

column heading.

If the selected column has an explicit column heading that is the same as the system column name, the

column name is used as the column heading.

You can define files that do not cause column headings to be defaulted. Column heading defaults for

calculated data and for file fields without established defaults are taken from the set of unique column

names manufactured at run time for the selected columns. These are the column names that are used to

create a new file for a SAVE DATA request.

To manufacture these names, query management processes the selected columns in order, from first to

last. The unique name for the nth selected column is created in the following way:

1. The column name from the file (table) definition (or SEL for a calculated field) is used as the created

name if it does not match any previously created name.

2. If the matched name is too long to add to the next available number, that number is added to COL to

create the name.

3. If the matched name is not too long to add to the next available number, that number is added to the

column name to create the name.

Note: The first number added to a column name or COL to make the name unique is 1, the next number

added is 2, and so on.

The following example shows the unique names created for a particular SELECT list.

 SELECT 7*WEEKS, SALARY, SALARY, SALARY/7*WEEKS, MAXBENEFIT, MAXBENEFIT

 | | | | | |

 | | | | | |

 SEL SALARY SALARY1 SEL2 MAXBENEFIT COL3

Duplicate column names are also made unique by appending a number. If the unique name would result

in a column name that exceeds thirty characters, the last five characters are truncated and replaced with a

five character number. For example:

SELECT ThisIsABigLongColumnNameExampl, ThisIsABigLongColumnNameExampl

results in the following column names:

SELECT ThisIsABigLongColumnNameExampl, ThisIsABigLongColumnNameE00001

If some of the columns have column heading defaults that were previously defined, the column headings

in a formatted report are not necessarily unique. This can be true for the *SYSDFT form as well as a form

specified by name.

Editing defaults for column in query management

Editing defaults are intended to be the same as those used by other data-displaying products on the

system, such as IBM Query for i5/OS. Character data is unchanged or truncated (such as query

management CPI edit code C). Scientific notation is used for floating data (such as query management

CPI edit code E). Editing defaults usually have no corresponding query management CPI representation

for numeric fields, and can include edit words, edit descriptions, and RPG edit codes.

Column Fields

72 System i: Query Management Programming

File (table) data defaults are established when a field (column) is defined to the system. System-level

values determine the editing for calculated data. These values come from a translatable message and are

used for building a default edit description whenever one is needed.

Changeable system-level values can also change the editing applied to numeric data, for example, using

the QDECFMT system value to change the editing applied for RPG edit code J.

Dates default to the closest SQL format according to the following rules:

 Table 7. Default SQL formats

i5/OS format SQL

*MDY MM/DD/YYYY (USA)

*YMD YYYY-MM-DD (ISO)

*DMY DD.MM.YYYY (EUR)

*JUL YYYY-MM-DD (ISO)

The date separator used is the SQL-default format shown above regardless of the job-date separator.

Times use the job time separator if the database connection is homogeneous. If the connection is

heterogeneous and the job-time separator is a colon, a colon is used; otherwise, the time separator is a

period.

Width defaults for column in query management

Width defaults are intended to provide room for everything that has to be shown in the column. For a

particular column, the default is the maximum of the following:

v The length of the longest segment of the column heading.

v The edited data width (after adjustment of the raw data length by 3 if SUM Usage aggregation values

have to be shown in the column).

v A length of 9 if COUNT Usage aggregation values have to be shown in the column.

Column names used as defaults for column headings are unique. When necessary to make the default

names unique, query management adds a number as a suffix to the end of the column name. When this

happens, the first occurrence of the column name remains unchanged. The number is added to all other

occurrences of the name. Numbers are assigned sequentially across all column names. For example:

 SELECT ID, ID, DEPT, JOB, ID, DEPT

results in default heading of

 ID ID1 DEPT JOB ID2 DEPT3

When the default column names cannot be made unique, query management assigns COLn for column

names. For example:

 SELECT ABCDEFGHIJKLMNOPQR, ABC, ABCDEFGHIJKLMNOPQR

results in default headings of

 ABCDEFGHIJKLMNOPQR ABC COL1

Column Fields

Chapter 6. Report forms in query management 73

Page fields in query management

The following fields are used to specify headings and footings on a report. Table 8 shows the defaults and

possible values for the attributes on the page fields.

 Table 8. Default and possible values for page fields

Attribute Default Possible values

Blank lines before heading 0 0 to 999

Blank lines before footing 2 0 to 999

Blank lines after heading 2 0 to 999

Blank lines after footing 0 0 to 999

Alignment on heading text CENTER LEFT, CENTER, RIGHT

Alignment on footing text CENTER LEFT, CENTER, RIGHT

Blank lines before heading/footing for page fields in query

management

These fields indicate the number of blank lines before the page heading or page footing and must be

specified as numbers. An acceptable value is any number from zero to 999. The default value for the page

heading is 0 and for the page footing is 2. A page eject always precedes the heading on each page. The

Blank lines before heading field controls the number of blank lines between the heading and the top of

the page. The Blank lines before footing field controls the number of blank lines between the report

body and the first footing line.

Blank lines are included in the count of the number of lines printed on the page.

Blank lines after heading/footing for page fields in query management

These fields indicate the number of blank lines after the page heading or page footing. The fields are

defined in query management as numerics only. An acceptable value is any number from zero to 999. The

default value for the page heading is 2 and for the page footing is 0. The Blank lines after heading field

controls the number of blank lines between the last heading line and the report body. The Blank lines

after footing field controls:

v The number of blank lines between the last footing line and the end of the page.

v The last footing line and the line containing the Date and time and/or Page number.

Blank lines are included in the count of the number of lines printed on the page.

Blank lines after footing takes precedence over Blank lines before footing; on a report page that has

extra space left after the body of the report, extra blank lines are inserted so the Blank lines after footing

value is the correct number of lines.

Heading text lines for page fields in query management

The heading text lines contain a maximum of 999 heading text lines.

Line value of heading text lines for page fields in query management

The Line value denotes the line positioning of the heading text lines.

For example, if you include text lines for line numbers 1 and 5, the text is displayed in the report as:

Page fields

74 System i: Query Management Programming

Text for line 1

 [blank line]

 [blank line]

 [blank line]

 Text for line 5

If you specify text line number 1 and then repeat the specification later, the last occurrence of line

number one prevails over the first occurrence.

Align field of heading text for page fields in query management

The Align field controls the positioning of the page heading text within the report line. Acceptable values

are:

RIGHT

Right-justify the text.

LEFT Left-justify the text.

CENTER

Center the text.

The default value for headings is center.

Heading text field for page fields in query management

These fields allow you to enter text that appears as the page heading in the report. You can enter a

maximum of 55 characters for each text line.

If the text line n is the biggest line with nonblank text, then n indicates how many lines are to be

formatted. This is true even though it could result in some of the formatted lines being completely blank.

Page headings may contain four types of special variables. All variables must be coded with a leading

ampersand (&) to identify them within the heading text.

&col Where col is a column name, system column name, or a column number. &col is assigned the first

value on the page for the specified column.

 Variable &col formats according to the edit code specification except when column wrapping is

specified. Then, the edit code specification is ignored. If necessary, the edited data is truncated to

the width of the column from which it was taken.

 The column name is the name of the column returned from SQL. It can only be specified in

uppercase. To determine the column name of a calculated column or a duplicate column, see

“Heading defaults for column in query management” on page 72.

 You must refer to the column by column number if the column name is DATE, TIME, PAGE, or

the column name contains a $, #, @, or a quote.

 The column number is determined by the order the columns are returned from the SQL statement

query or prompted query. The column number is not determined by the order in the Sequence

field. &col is set at each page break.

&DATE

Where query management replaces the value with the current date.

&TIME

Where query management replaces the value with the current time. For OS/2, the current time is

in the format based on the edit code in the active profile or the system country or region code.

&PAGE

Where query management replaces the value with the current page number. The format of the

Page fields

Chapter 6. Report forms in query management 75

page number is a 4-digit number, ranging from 1 to 9999, with leading zeros suppressed. After

9999, the counter wraps to 0 and continues to increase for subsequent pages without leading zero

suppression.

When the report prints, the page heading appears at the top of each page, formatted according to the

format specification. The variable &col formats according to the edit code specification, except when

column wrapping is specified. If column wrapping is specified for the column, it is ignored when the

data formats into the text.

All variables are resolved when the report is created.

Footing text lines for page fields in query management

The footing text contains a maximum of 999 footing text lines.

Line value of footing text lines for page fields in query management

The Line value denotes the line positioning of the footing text lines.

For example, if you include text lines for line numbers 1 and 5, the text is displayed in the report as:

 Text for line 1

 [blank line]

 [blank line]

 [blank line]

 Text for line 5

If you specify text line number 1 and then repeat the specification later, the last occurrence of line

number one prevails over the first occurrence.

Align field of the footing text for page fields in query management

The Align field controls the positioning of the page footing text within the report line. Acceptable values

are:

RIGHT

Right-justify the text.

LEFT Left-justify the text.

CENTER

Center the text.

The default value for footings is center.

Footing text field for page fields in query management

These fields allow you to enter text for the page footing that is to appear in the report. You can enter a

maximum of 55 characters for each text line. You can use the variables described above for the heading

text field. When the report formats, appropriate values are substituted for the variables. The variable &col

is assigned the last value on the page for the specified column. When the report prints, the page footing

appears at the bottom of each page, formatted according to the format specification. The variable &col:

formats according to the edit code specification, except when column wrapping is specified. If you

specify column wrapping, it is ignored when the data formats into the text. The formatted page footing

appears once at the bottom of the displayed report.

If the text line n is the biggest line with nonblank text, then n indicates how many lines are to be

formatted. This is true even though it could result in some of the formatted lines being completely blank.

Page fields

76 System i: Query Management Programming

Final text fields in query management

The following fields are used to specify the final text that appears on a report. Table 9 shows the defaults

and possible values for the attributes on the final text fields.

 Table 9. Default and possible values for final text fields

Attribute Default Possible values

New page NO YES, NO

Put final summary at line 1 1 to 999 or NONE

Blank lines before text 0 0 to 999 or BOTTOM

Alignment for final text RIGHT LEFT, CENTER, RIGHT

New page for final text fields in query management

This field indicates whether the subsequent part of the report (final text) must begin on a separate page

when printed. The default is no. When you specify Yes for New Page, the final text formats on a new

page.

Put final summary at line for final text fields in query management

This field indicates whether the final summary should be in formatted form and where to vertically

position it in the report final text. Acceptable values are the numbers 1 to 999, or the word NONE, where

NONE indicates there is no presentation of final summary data. The default value is one (1).

A value of one to 12 indicates the relative line number within the final text at which the summary data

must format. This is strictly vertical placement. For horizontal placement in the line, the final summary is

always formatted under the columns being summarized. If there are no column widths with aggregating

usages, this value is ignored.

Blank lines before text for final text fields in query management

This field indicates the number of blank lines between the body of the report and the first line of final

text. An acceptable value is any number from zero to 999. The default value is zero. You may also specify

BOTTOM, which positions the final text at the bottom of the printed page. BOTTOM causes insertion of a

number of blank lines, in order to position the final text immediately before the page footing text

specification on the page. If there is not enough space for the final text on the current page, it is placed at

the bottom of the next page.

Line field for final text lines in query management

This field indicates the line positioning of the final text lines.

For example, if you include text lines for line numbers 1 and 5, the text is displayed in the report as:

 Text for line 1

 [blank line]

 [blank line]

 [blank line]

 Text for line 5

If you specify text line number 1 and then repeat the specification later, the last occurrence of line

number one prevails over the first occurrence.

Align field for final text fields in query management

This field controls the positioning of the final text within the report line; it refers to alignment between

the left margin and the first summary column. If the report does not contain final summary data, then

the alignment refers to the entire width of the displayed or printed report. Acceptable values are:

Final text fields

Chapter 6. Report forms in query management 77

RIGHT

Right-justify the text.

LEFT Left-justify the text.

CENTER

Center the text.

The default value is right for the final text. If there is no associated final text, the Align value is ignored.

Final text lines for final text fields in query management

There are 999 lines available for the final text. You specify what appears on these lines. A maximum of 55

characters can be entered for each text line. &col: is the only variable that is allowed. The variable &col is

assigned the last value of the last record in the specified column. Variable &col formats according to the

edit code specification except when column wrapping is specified. Then, the edit code specification is

ignored. If necessary, the edited data is truncated to the width of the column from which it was taken.

If the text line n is the biggest line with nonblank text, then n indicates how many lines are to be

formatted. This is true even though it could result in some of the formatted lines being completely blank.

If the Put final summary at line value is m and m > n, then there are m final lines formatted in the

report.

Break fields in query management

You can specify information for break levels one (1) to six (6). You also change or specify the exported

form by selecting the proper form field numbers. See Chapter 8, “Exported and imported objects in query

management.” There are distinct field numbers for each of the break levels. You specify options for each

break level in a similar manner. Each set of options is independent from the others.

Table 10 shows the defaults and possible values for the attributes in the break fields.

 Table 10. Default and possible values for break fields

Attribute Default Possible values

New page for break NO YES, NO

New page for footing NO YES, NO

Repeat column heading NO YES, NO

Blank lines before heading 0 0 to 999

Blank lines before footing 0 0 to 999 or BOTTOM

Blank lines after heading 0 0 to 999

Blank lines after footing 1 0 to 999

Put break summary at line 1 1 to 999 or NONE

Alignment on break heading text LEFT LEFT, CENTER, RIGHT

Alignment on break footing text RIGHT LEFT, CENTER, RIGHT

New page for break/new page for footing for break field in query

management

These fields indicate whether the subsequent part of the report begins on a new page. The default value

is no for both. When you specify Yes for the New Page for Break field, the member lines for the break

Final text fields

78 System i: Query Management Programming

format on a new page. If you specify a break heading, it precedes the break member lines on the new

page. When you specify Yes for the New Page for Footing field, the break footing formats on the next

page (if a footing exists).

Repeat column heading for break field in query management

This field indicates whether the column headings should repeat above the member lines for a particular

break level. No is the default value.

When paging or printing a report, the column headings always appear at the top of the screen or page.

In addition to these headings, a set of headings appears at the start of the break if Yes is specified for

Repeat Column Headings for that break. This happens regardless of whether there is any break heading

text. However, if the break starts at the top of a printed page, only one set of column headings, the set

preceding the break member line, formats.

Blank lines before heading/footing for break field in query

management

These fields indicate the number of blank lines that appear before the break heading or break footing. If

no break heading is specified, then the value for this field is the number of blank lines before the break

member lines. Acceptable values are any number from zero to 999. The default is zero for both the

heading and the footing.

The Blank Lines Before Heading field may contain a number only.

For a break footing, you may also specify BOTTOM. Applicable only to a printed report, BOTTOM causes

the break footing to position at the bottom of the current page on a printed report. BOTTOM causes

insertion of blank lines in order to position the text immediately before the page footing text specification

on the page. This also implies that a page eject occurs, since the next line must print on the next page.

Blank lines after heading/footing for break field in query management

These fields indicate the number of blank lines after the break heading or break footing. If no break

heading is specified, then the value of this field defaults to the number of blank lines after the break

member lines. If no break footing is specified, then the blank footing is included in the blank lines after

the break member lines. An acceptable value is any number from zero to 999. The default is zero for the

heading and one (1) for the footing.

Put break summary at line for break field in query management

This field indicates whether the break summary is to format and, if it does, where to place it relative to

the lines of break footing text. The value can be from 1 to 999, or NONE, with NONE indicating that no

break summary information is to display for the break. The default is one (1). The number used

corresponds to the number of the line of break footing text with which the break summary is to display.

This placement is strictly vertical. For horizontal placement in the line, the break summary always

formats under the columns being summarized. If there are no column widths with aggregating usages,

this value is ignored because there are no columns to summarize.

Break heading text lines

The heading text lines field contains a maximum of 999 heading text lines.

Line value for break heading text lines in query management

The Line value denotes the line positioning of the heading text lines.

For example, if you include text lines for line numbers 1 and 5, the text is displayed in the report as:

Break fields

Chapter 6. Report forms in query management 79

Text for line 1

 [blank line]

 [blank line]

 [blank line]

 Text for line 5

If you specify text line number 1 and then repeat the specification later, the last occurrence of line

number one prevails over the first occurrence.

Align field for break heading text in query management

This field controls the positioning of the break heading text within the report line. Acceptable values are:

RIGHT

Right-justify the text.

LEFT Left-justify the text.

CENTER

Center the text.

The default value is left. The alignment is based on the entire width of the displayed or printed report.

Break heading text for break heading in query management

Fifty-five (55) characters per line are allowed on break heading text. Only &col: is allowed to be used as a

variable. The variable &col: is assigned the first value of the break group for the specified column.

Variable &col formats according to the edit code specification except when column wrapping is specified.

Then, the edit code specification is ignored. If necessary, the edited data is truncated to width of the

column from which it was taken.

If the text line n is the biggest line with nonblank text, then n indicates how many lines are to be

formatted. This is true even though it could result in some of the formatted lines being completely blank.

Break footing text lines in query management

The footing text lines field contains a maximum of 999 footing text lines.

Line value for break footing text lines in query management

The Line value denotes the line positioning of the footing text lines.

For example, if you include text lines for line numbers 1 and 5, the text is displayed in the report as:

 Text for line 1

 [blank line]

 [blank line]

 [blank line]

 Text for line 5

If you specify text line number 1 and then repeat the specification later, the last occurrence of line

number one prevails over the first occurrence.

Align field for break footing text in query management

This field controls the positioning of the page footing text within the report line. Acceptable values are:

RIGHT

Right-justify the text.

LEFT Left-justify the text.

Break fields

80 System i: Query Management Programming

CENTER

Center the text.

The default value is right. The alignment refers to the space between the first character position on the

left and the first summary column. If the report does not contain break summary data, the alignment

refers to the entire width of the displayed or printed report.

Break footing text field for break footing in query management

Only &col is allowed as a variable. The variable &col is assigned the last value of the break group for the

specified column. You can use up to 55 characters per line. Lines considered part of the break footing text

include lines up to, but not including, the first blank field not followed by a nonblank field.

If the text line n is the biggest line with nonblank text, then n indicates how many lines are to be

formatted. This is true even though it could result in some of the formatted lines being completely blank.

If the Put break summary at line value is m and m > n, then there are m break lines formatted in the report.

Options fields in query management

The options fields allow you to specify various report formatting options.

Table 11 shows the default and possible values for the attributes on the options fields.

 Table 11. Default and possible values for options fields

Attribute Default Possible values

Detail line spacing 1 1 to 4

Outlining for break columns YES YES, NO

Default break text YES YES, NO

Column-wrapped lines kept on page YES YES, NO

Column heading separators YES YES, NO

Break summary separators YES YES, NO

Final summary separators YES YES, NO

Detail line spacing for options field in query management

This field indicates the spacing you request between each detail line in the report. Numbers are the only

valid input for this field. Acceptable values are 1, 2, 3, or 4, where 1 is single spacing, 2 is double spacing,

and so on. The default value is 1.

Outlining for break columns for options field in query management

If you assign a usage code for a break to one of the columns, then this field is used to determine when

the value in the break column displays in the report. Yes is the default and displays the value in the

break column only when the value changes. A No in this field displays the value in the break column on

every detail line in the report.

Default break text for options field in query management

This field indicates whether you are requesting inclusion of the default break text in the report. The

default value is yes. Use default break text to mark the break aggregation line. The break aggregation line

is one or more asterisks for each break level; one asterisk for the highest numbered break level text, two

asterisks for the next highest numbered break level text, and so on. For example, if the report has two

control breaks, BREAK2 and BREAK4, query management generates one asterisk to mark the level-4

break and two asterisks to mark the level-2 break.

Break fields

Chapter 6. Report forms in query management 81

Column wrapped lines kept on a page for options field in query

management

If you specified column wrapping for one or more columns in the report, this field is used to determine

whether the wrapped columns can be split between two pages. The default for this field is Yes. It

prevents splitting wrapped columns between two pages (unless the wrapped column is longer than the

page depth). A No in this field allows splitting of wrapped columns between pages.

Column heading separators for options field in query management

This field indicates whether the column heading separators (dash lines) appear in the report. The default

value is yes.

Break summary separators for options field in query management

This field indicates whether the break summary separators (dash lines) appear in the report. The default

value is yes. A blank separator line is generated if there are no summary columns and the value specified

is yes.

Final summary separators for options field in query management

This field indicates whether the final summary separators (equal signs) appear in the report. The default

value is yes. A blank separator line is generated if there are no summary columns and the value specified

is yes.

Options fields

82 System i: Query Management Programming

Chapter 7. Callable interface in query management

The DB2 for i5/OS query management callable interface (CI) provides the ability for application

programs to perform query management functions through calls to the query management interface.

After completion of the DB2 for i5/OS query management function, return code and status information is

available to the calling program. The CI is supported by query management for ILE C, C, COBOL, and

RPG languages.

The CI consists of the following elements:

v Query management CI macros

The query management macro instructions consist of the include and macro files that are used when

application programs that call the query management CI modules are compiled. They contain the

declarations for the communications area structure and any constants that are required to update and

access the communications area structure. They also provide a standard interface from different

programming languages to query management CI modules. The interface provides common storage

and access of program variables between the programming language and query management. One

query management CI macro or include is provided for each language that query management

supports.

Table 12 lists the individual macro include packages available for query management. The macro

include files are also available in a combined package as shown in Table 13.

 Table 12. Macro include packages

Language Library File Member

ILE C QCLE H DSQCOMMC

COBOL QLBL QILBINC DSQCOMMB

RPG QRPG QIRGINC DSQCOMMR

 Table 13. Combined macro include package

Language Library File Member

ILE C QSYSINC H DSQCOMMC

OPM COBOL QSYSINC QLBLSRC DSQCOMMB

OPM RPG QSYSINC QRPGSRC DSQCOMMR

Before compiling an application program that uses these includes or macros, copy the member to the

default include file used by the compiler. This allows the include to be used by the application

program without being qualified with the library or file, which maintains a higher degree of

portability.

You can code application programs to qualify the include with the library and file name. This ensures

the program is compiled with the newest version of the include.

v Query management

Provides query and report writing services.

v Query management CI modules

Modules provided by the interface to allow access to the query management function. These modules

are:

DSQCICE

The ILE C and C language interface module for extended parameter lists

© Copyright IBM Corp. 1998, 2008 83

DSQCIC

The ILE C and C language interface module for nonextended parameter lists

DSQCIB

The COBOL language interface module

DSQCIR

The RPG language interface module

Callable interface in query management description

The callable interface (CI) is an interface that programming languages can use to run query management

commands. All query management commands are supported through the CI.

To run a query management command, a program issues a call to start communications between the

program and query management. This call is made to query management supplied routine.

The calling program can issue one or more query management commands after the initial start call. Each

query management command that is processed requires a call to a query management supplied routine.

Information about the processing of the call is returned to the caller in a return code at the completion of

each query management command. Other information about the processing of the command is gathered

by the CI and stored in shared variables. When control returns to the calling application, these variables

are available by reference.

The program issues a call to end communication between the program and query management when it

no longer needs to use query management functions. This call is made to a query management supplied

routine.

Some considerations in the above processing are:

v A call to query management returns to the application only when processing of the command has been

completed.

v CI remains in a quiesced state when it is not processing a call.

v All communications to the application will be via return codes and variable data stored in the variable

pool or in the Interface Communications Area.

v Commands must be coded in uppercase English letters.

v The length of the passed commands must be at most 256 bytes.

The following diagram shows where the CI fits into the overall scheme.

Figure 11. Callable interface diagram

84 System i: Query Management Programming

If an application successfully processes a query management command through the CI, the results are, in

general, what they would be if the command had been processed online without showing display

screens.

Query management CI provides a unique interface communications macro for each language that is

supported. The communications macro contains the following definitions, as appropriate:

1. Interface communications area (DSQCOMM)

2. Return codes

3. Call Interface to query management

Interface communications area (DSQCOMM) in query management CI

The query management CI communications area is required on all CI calls. Storage for the CI

communications area is allocated by the program that is using the query management CI.

The START command establishes a unique instance of query management. As part of START command

processing, the CI communications area is updated by query management. The CI communications area

must never be altered by the application program. All subsequent calls after the START command must

pass the address of the CI communications area that corresponds to an instance of query management.

The user program is responsible for pointing to the correct communications area.

The CI communications area is described by the CI communications macro. There is a unique

communications macro for each supported language. For applications to be portable, values must be

referred to by variable name rather than by equated value because this value may be different on other

systems.

The CI communications area DSQCOMM contains the following information which must not be altered

by the calling program:

v Return Code

Indicates the status of query management processing after a command is run.

v Instance Identifier

Indicates the identifier that is established by query management during processing of the START

command.

v Completion Message ID

Contains the message ID of the message that would have been displayed at the user terminal, if the

command had been issued there.

v Query Message ID

Contains the message ID of a query message, if the command resulted in query processing. This is the

message ID of the message that would have been displayed in the job log. This message ID is different

across the environments. It is provided to assist in debugging the application and should not be

depended on in a portable application.

v START Command Parameter in Error

Contains the parameter in error when START failed due to a parameter error.

v Cancel Indicator

Indicates whether the user canceled the command processing while query management was running a

command.

v Query Derived

Indicates whether the query information was derived from an IBM Query for i5/OS definition.

v Form Derived

Indicates whether the form information was derived from an IBM Query for i5/OS definition.

Callable Interface Description

Chapter 7. Callable interface in query management 85

Return codes in the query management CI

Return codes are returned after each call to the query management CI. Return code values are described

in the CI communications macro. For applications to be portable, values must be referred to by variable

name rather than by equated value because this value might be different on other systems.

Return codes from the CI will include the following:

v Successful processing of the request.

v Command processed with warning condition.

v Command did not process correctly.

v Severe error: Query management session ended for the applicable instance.

For a definition of each return code, see “C language interface in the query management CI” on page 92,

“COBOL language interface in the query management CI” on page 99, and “RPG language interface in

the query management CI” on page 105.

Return variables in the query management CI

When control is returned through the CI, variables are set that contain information about the completion

of the query management command. The calling program can obtain the return variables from the

variable pool.

Variables are referred to symbolically by name and are obtained from the query management variable

pool by using the GET command.

Command message variables in the query management CI

After a command is initiated by an interactive user, the user sees a message on the screen indicating

either a successful completion or an error during processing. This same information is available to the

application through command message variables. The following command message variables are

provided at the completion of each query management command processed through the CI:

DSQCIMNO

Contains the message number. The message number is also returned in the DSQCOMM area.

DSQCIMSG

Contains the first level message text as it would be displayed to the user interactively.

Query message variables in the query management CI

If an error occurs when dealing with the processing of query management query, a query message might

be produced to help in problem analysis. For example, an error could have happened during processing

of a RUN QUERY command. In this case, additional information might be provided. Query management

message variables consist of the following:

DSQCIQNO

Contains the message number. The message number is also returned in the DSQCOMM area.

DSQCIQMG

Contains the first level message text as it would be displayed to the end user interactively.

DSQCISQL

Contains the SQL return code from DB2 for i5/OS, if any.

Command syntax extension in the query management CI

In order for query management to provide variable support to high-level languages, such as COBOL,

query management must have access to the caller’s program storage. (For an explanation of query

management variable support, see “Extended variable support in the query management CI” on page 87.)

A DB2 for i5/OS query management command extension is used to support commands that require

access to the caller’s program storage area. The command extension is a different way to specify query

Callable Interface Description

86 System i: Query Management Programming

management command options. The command extension is used for the GET, SET, and START

commands because access to the user program area is required to support these commands.

Extended variable support in the query management CI

A variable is a named entity within query management that can be assigned a value. Extended variable

support allows applications to define global variables within query management.

Variables can be used as substitution values in SQL queries and are available when using the CI. After a

variable is created, it is available to the query management session for the life of the session. In addition

to application-defined variables, query management maintains a set of product variables. These variables

are also available to SQL queries and the CI.

See Appendix C, “Use of quotation marks and apostrophes when setting global variables in query

management” for examples of setting global variables.

Creating variables in the query management CI

Variables are created implicitly at run time, when they are first referred to during SQL query processing.

They are also created explicitly, when they are set to a specific value using the SET GLOBAL command.

When a variable is created implicitly, the variable value exists only during processing of the RUN QUERY

command.

Referencing variables in the query management CI

Variables can be referred to by specifying the variable name within an SQL query or a user program by

using the GET GLOBAL command. When a variable name is referred to within an SQL query, the

variable name must be prefixed with an ampersand (&) in order for query management to recognize it as

a variable. For example:

 SELECT * FROM &TNAME

The value &TNAME is considered query management variable.

Variable names in the query management CI

The following rules apply when you use variables in SQL queries across the callable interface.

v Names can contain the following characters:

– Letters. A letter is any of the single-byte characters (A through Z, or any alphabetic character from a

national alphabet).

– Arabic numbers (0 through 9)

– Underscore (_)
v Variable names must start with a letter (see exception for variable names used in SQL queries below).

v Names cannot be longer than 18 characters.

v Variable names that are used in SQL queries must be preceded by an ampersand (&), and the next

character must be a single-byte character set letter. The ampersand does not take up one of the 30

characters allowed for the name. Be aware that the ampersand character delimits the beginning of a

variable name; you cannot have more than one ampersand in a variable name because each ampersand

would delimit the beginning of a distinct variable name.

v User-defined variables should not start with DSQ.

The following are valid variable names:

 In an SQL Query In the GET/SET Command

 -------------------- -------------------------

 &I_OWE_YOU I_OWE_YOU

 &MYVAR123 MYVAR123

 &THIS_IS_A_BIG_NAM THIS_IS_A_BIG_NAME

Callable Interface Description

Chapter 7. Callable interface in query management 87

Variable values in the query management CI

Variable values can be character or integer values. The rules are as follows:

Character variables in the query management CI

v Character variable values consist of any value up to 55 characters long.

v A GET of a character variable into a smaller character field is allowed. The character string is truncated

on the right after 55 characters.

v A GET of a character variable into a larger character field is allowed. The character string is

left-adjusted and blank-padded. The null character at the end of a C string is not moved.

v A C null character is inserted at the end of the string if the GET was done through the C language

callable interface.

Integer variables in the query management CI

v Integer variable values must be 4 bytes long. An attempt to SET or GET an integer with a length other

than 4 bytes results in an error.

v Integer variable values are assumed to be signed.

v The value must observe SQL rules when used in an SQL query.

v An integer value is converted to a character string without leading or trailing blanks prior to

substitution into the SQL statement. Do not use an integer variable if an implied result field width is

needed or if you are using variable substitution while defining the result field in the SQL statement.

Defined variables in the query management CI

Query management provides global variables, which can be useful to user programs. The current set of

query management variables can be used to determine the current status of the query management

environment and particular objects. Query management variables cannot be altered by the user, program,

or procedure. A subset of these variables can be set by the user using the query command procedure that

is specified on the START command. (See “START in query management” on page 51.)

The following variables are available in query management. The length given is the maximum length for

the variable.

DSQAAUTH

Current connect authorization ID. This name will contain the name of the user profile under

which the job is running.

Type Character

Length

10

Value -

DSQOAUTH

Default object public authority to be given to objects created through query commands. Refer to

“START in query management” on page 51 for a description of the values.

Type Character

Length

10

Value

v *LIBCRTAUT

v *EXCLUDE

v *ALL

v *USE

Extended variable support

88 System i: Query Management Programming

v *CHANGE

v An authorization list name

DSQSNAME

Naming convention be used. Refer to “START in query management” on page 51 for a

description of this variable.

Type Character

Length

4

Value

v *SAA

v *SYS

DSQAPRNM

Current default printer.

Type Character

Length

10

Value

v *SAME

v *JOB

v Printer Device Name

DSQCATTN

Last command cancel indicator.

Type Character

Length

3

Value

v YES

v NO

DSQCISQL

Last SQL return code.

Type Integer

Length

4

Value See the SQL messages and codes topic in the information center.

DSQSQLST

SQL state. The extended SQL return code designed for IBM relational database products.

Type Character

Length

5

Value See the topic on SQLSTATES in the SQL messages and codes topic in the information

center.

DSQAROWS

Current number of rows fetched for data.

Extended variable support

Chapter 7. Callable interface in query management 89

Type Integer

Length

4

Value 0 - maximum # rows

DSQAROWC

Current data is completed.

Type Character

Length

3

Value

v YES

v NO

DSQSMODE

Current processing mode.

Type Character

Length

11

Value

v BATCH

v INTERACTIVE

DSQCONFIRM

Confirm processing default.

Type Character

Length

3

Value

v YES

v NO

DSQSCNVT

Allows the use of information derived from a query definition.

Type Character

Length

4

Value

v NO

v YES

v ONLY

DSQCIMNO

The query message ID. It is the same value that is returned in the query message line of the

communications area.

Type Character

Length

8

Extended variable support

90 System i: Query Management Programming

Value -

DSQCIQNO

The message ID. It is the same value that is returned in the completion message line of the

communications area.

Type Character

Length

8

Value -

DSQCIMSG

Contains the message text as it would be displayed to the user interactively.

Type Character

Length

55

Value -

DSQCIQMG

Contains the query message text as it would be displayed to the user interactively.

Type Character

Length

55

Value -

DSQSDBNM

Remote database name to which all SQL operations will be directed.

Type Character

Length

18

Value

v *CURRENT

v *NONE

v rdbname

DSQUSER

User identification to be used with a remote database.

Type Character

Length

10

Value

v *CURRENT

v username

DSQCMTLV

Specifies session commitment control level.

Type Character

Length

4

Value

Extended variable support

Chapter 7. Callable interface in query management 91

v NONE

v UR

v CS

v RS (RS is changed to RR on output to DB2 and SQL/DS™; RR is changed back to RS

on return to the i5/OS operating system.)

v RR

Commitment control in the query management CI

Commitment control is a means of grouping database file operations. Database changes are grouped into

a single unit. That unit can be saved or removed through the commit or rollback commands. When you

specify a level of commitment control, you are specifying how large a group of changes you want to

work with as a single unit. Commitment control is specified using the DSQCMTLV keyword on the

START command. The different types are:

v NONE—No commitment control is used.

v UR—The updated rows are locked together until the end of the transaction.

v CS—Any row that the cursor is in is locked until the cursor changes position.

v RS—All selected rows are locked until the end of the transaction.

v RR—All selected rows are locked until the end of the unit of work (UOW). This ensures that repeated

reads within a unit work always give the same results.

Note: The SAVE DATA AS command always has a commitment control level of NONE.

For more information about commitment control, see the Recovering your system book.

Accessing CI with HLL programs in query management

You can access the query management callable interface (CI) through the following high-level languages:

v C

v COBOL

v RPG/400®

C language interface in the query management CI

The query management callable interface is accessed by using normal C function calls. The exact

description of each function call is provided in the callable interface C communications include file,

DSQCOMMC. The communications include file, DSQCOMMC, is unique for each operating system.

Query management provides two external subroutine calls, DSQCIC and DSQCICE. DSQCIC is used to

process query management commands that do not require access to program variables. DSQCICE is used

to process commands that do require access to program variables.

The following commands must use the DSQCICE function:

 START

 SET GLOBAL

 GET GLOBAL

All other query management commands must be specified using the DSQCIC function.

Example DSQCOMMC of the C interface in the query management CI

Figure 12 on page 93 shows the i5/OS version of the query management CI C communications macro.

Extended variable support

92 System i: Query Management Programming

/***/

/* */

/* NAME: dsqcommc.h */

/* */

/* MODULE-TYPE: IBM C query management interface include file */

/* */

/* PROCESSOR: C */

/* */

/* DESCRIPTION: */

/* This include file contains the declarations needed */

/* by a C application program for interfacing */

/* with the query management callable interface. */

/* */

/* Copyright: 5728-SS1 (C) COPYRIGHT IBM CORP. 1989 */

/* */

/***/

/***/

/* Callable Interface Constants and Structures */

/***/

/* return code values for DSQ_RETURN_CODE */

#define DSQ_SUCCESS 0 /* successful running of the request */

#define DSQ_WARNING 4 /* normal completion with warnings */

#define DSQ_FAILURE 8 /* command did not process correctly */

#define DSQ_SEVERE 16 /* severe error; Query session */

 /* ended. */

/* Variable data types */

#define DSQ_VARIABLE_CHAR "CHAR" /* unsigned character data type */

#define DSQ_VARIABLE_FINT "FINT" /* long integer type */

/* Cancel indicator */

#define DSQ_CANCEL_YES "1" /* Yes it was canceled. */

#define DSQ_CANCEL_NO "0" /* No, it was not canceled. */

/* Derived query/form indicator */

#define DSQ_DERIVED_YES "1" /* Yes it was derived from QRYDFN*/

#define DSQ_DERIVED_NO "0" /* No, it was not derived */

/* Yes/No indicator. This indicator can be used to test the values */

/* returned for the following global variables: */

/* DSQCATTN - Last command cancel indicator. */

/* DSQAROWC - Current data completed indicator. */

/* */

#define DSQ_YES "1" /* Yes */

#define DSQ_NO "0" /* No */

/* misc defines */

#define DSQ_TRUE 1 /* indicates TRUE */

#define DSQ_FALSE 0 /* indicates FALSE */

#define DSQ_MATCH 0 /* match indicator */

Figure 12. Example DSQCOMMC (Part 1 of 2)

C Language Interface

Chapter 7. Callable interface in query management 93

C variable support in the query management CI

For C variables that are input character strings (including command strings and START and SET

command variables), the user must pass an area that has a null value at the end. The length of the

variable must also include the null value. The length function should be used to obtain the variable

length that is passed to query management. The null value (X'00') indicates the end of a character string.

For C variables that are output character strings (including values set by the GET command), query

management moves data from query management storage to the user’s specified storage area and sets

/* define the Communication Area structure */

struct dsqcomm

 {

 unsigned long dsq_return_code; /* function return code */

 unsigned long dsq_instance_id; /* instance id for this session */

 unsigned char dsq_reserve1[44]; /* reserved space - */

 /* not for application use */

 unsigned char dsq_message_id[8]; /* completion message id*/

 unsigned char dsq_q_message_id[8]; /* query message id*/

 unsigned char dsq_start_parm_error[8]; /* start parm*/

 unsigned char dsq_cancel_ind[1]; /* command canceled by */

 /* Control-Break (1=yes,0=no)*/

 unsigned char dsq_reserve2[17]; /* reserved space - */

 /*not for application use */

 unsigned char dsq_query_derived[1]; /* query used was */

 /*derived from i5/OS *QRYDFN */

 unsigned char dsq_form_derived[1];/*form used was derived */

 /* from i5/OS *QRYDFN */

 unsigned int dsq_delete_env; /* flag used by QM to */

 /* control the QM */

 /* environment. */

 unsigned char dsq_reserve3[924]; /* Reserve area 3 */

 /* application use */

 } ;

/***/

/* Callable Interface External Function/Routine Definition */

/***/

/* pragma definitions */

#define dsqcice DSQCICE

#define dsqcic DSQCIC

#pragma linkage(DSQCIC, OS)

#pragma linkage(DSQCICE, OS)

/* prototype for DSQCICE */

extern void dsqcice (

 struct dsqcomm *, /* Communication Area */

 signed long *, /* command length */

 char *, /* command */

 signed long *, /* number of parms */

 signed long *, /* keyword lengths */

 char *, /* keywords */

 signed long *, /* data lengths */

 void *, /* data */

 char *); /* data value type */

/* prototype for DSQCIC */

extern void dsqcic (

 struct dsqcomm *, /* Communication Area */

 signed long *, /* command length */

 char *); /* command */

Figure 12. Example DSQCOMMC (Part 2 of 2)

C Language Interface

94 System i: Query Management Programming

the null indicator at the end of the string. If the character string does not fit in the user’s storage area, a

warning message is issued and the data is truncated on the right. A null indicator is always placed at the

end of the data string.

DSQCIC function syntax for C in the query management CI

 dsqcic(&communication_area,&command_length,&command_string);

Where:

v communication_area is the structure DSQCOMM.

v command_length is the length of command_string.

The length is specified as a long integer.

v command_string is the query management command to be processed.

The command string is specified as an array of character type.

DSQCICE function syntax for C in the query management CI

 dsqcice (&communication_area,&command_length,&command_string,

 &number_of_parameters,&variable_length,&variable,

 &value_length,&value,&value_type);

Where:

v communication_area is the structure DSQCOMM.

v command_length is the length of command_string.

The command length is specified as a long integer.

v command_string is a pointer to a character string that specifies the query management command to be

processed.

The command string is specified as an array of character type.

v number_of_parameters is the number of command variables.

The number of variables is specified as a long integer.

v variable_length is the length of each specified variable name.

The length of the variable name is specified as a long integer type variable or variable array.

v variable is the query management variable name.

The variable name string is specified as an array of unsigned character type.

v value_length is the length of each value associated with the variable.

The length of the associated values is specified as a long integer type variable or variable array.

v value is the value associated with each variable.

The value string is specified as an array of unsigned character type or a long integer type variable or

variable array. The type is specified in the VTYPE parameter.

v value_type indicates the query management data type of the value string VALUE.

The value type string contains one of the following values that is provided in the query management

communications macro:

 DSQ_VARIABLE_CHAR indicates that the value string is unsigned character type.

 DSQ_VARIABLE_FINT indicates that the value string is long integer type.

Interface communications area (DSQCOMM) for C in the query

management CI

The query management interface communications area is part of the communications macro

DSQCOMMC. The interface communications area is described as a structure type named DSQCOMM.

The CI communications area DSQCOMM contains the following information which must not be altered

by the calling program:

C Language Interface

Chapter 7. Callable interface in query management 95

dsq_return_code (Unsigned long int)

Integer that indicates the status of query management processing after a command is run.

dsq_instance_ID (Unsigned long int)

Identifier that is established by query management during processing of the START command.

dsq_reserve1 (Char 44)

Reserved for future use.

dsq_message_id (Char 8)

Completion message ID.

dsq_q_message_id (Char 8)

Query message ID.

dsq_start_parm_error (Char 8)

Parameter in error when START failed due to a parameter error.

dsq_cancel_ind (Char 1)

Command cancel indicator; indicates whether the user had canceled the command processing

while query management was running a command:

 dsq_cancel_yes (Char = 1)

 dsq_cancel_no (Char = 0)

dsq_reserve2 (Char 23)

dsq_query_derived (Char 1)

Indicates whether the query information used was derived from an IBM Query for i5/OS

definition.

dsq_form_derived (Char 1)

Indicates whether the form information used was derived from an IBM Query for i5/OS

definition.

dsq_reserve2 (Char 17)

dsq_reserve3 (Char 156).

Return codes for C language interface in the query management CI

Return codes are returned after each call to the query management CI. Return code values are described

by the data interface macro. For applications to be portable, values must be referred to by variable name

rather than by equated value because this value might be different on other systems.

Return code values for “dsq_return_code” are:

DSQ_SUCCESS

Successful processing of the request.

DSQ_WARNING

Normal completion with warnings.

DSQ_FAILURE

Command did not process correctly.

DSQ_SEVERE

Severe error: Query management session ended for the applicable instance. Because the query

management session ended, additional calls to query management cannot be made using this

instance ID.

C Language Interface

96 System i: Query Management Programming

Sample C language query CI program in query management

Figure 13 is an example of a C language program written for query management CI.

 /**/

 /* Sample Program: DSQABFC */

 /* C Version of the query management callable interface */

 /**/

 /**/

 /* Include standard and string "C" functions */

 /**/

 #include <string.h>

 #include <stdlib.h>

 /**/

 /* Include and declare query interface communications area */

 /**/

 #include <DSQCOMMC.H>

 int main()

 {

 struct dsqcomm communication_area; /* DSQCOMM from include */

 /**/

 /* Query interface command length and commands */

 /**/

 signed long command_length;

 static char start_query_interface[] = "START";

 static char set_global_variables[] = "SET GLOBAL";

 static char run_query[] = "RUN QUERY Q1";

 static char print_report[] = "PRINT REPORT (FORM=F1";

 static char end_query_interface[] = "EXIT";

 /**/

 /* Query command extension, number of parameters and lengths */

 /**/

 signed long number_of_parameters; /* number of variables */

 signed long keyword_lengths[10]; /* lengths of keyword names */

 signed long data_lengths[10]; /* lengths of variable data */

 /**/

 /* Variable data type constants */

 /**/

 static char char_data_type[] = DSQ_VARIABLE_CHAR;

 static char int_data_type[] = DSQ_VARIABLE_FINT;

 /**/

 /* Keyword parameter and value for START command */

 /**/

 static char start_keywords[] = "DSQSCMD";

 static char start_keyword_values[] = "USERCMD1";

Figure 13. Sample C program (Part 1 of 3)

C Language Interface

Chapter 7. Callable interface in query management 97

/**/

 /* Keyword parameter and values for SET command */

 /**/

 #define SIZE_VAL 8

 char set_keywords [3][SIZE_VAL]; /* Parameter name array */

 signed long set_values[3]; /* Parameter value array */

 /**/

 /* MAIN PROGRAM */

 /**/

 /**/

 /* Start a Query Interface Session */

 /**/

 number_of_parameters = 1;

 command_length = sizeof(start_query_interface);

 keyword_lengths[0] = sizeof(start_keywords);

 data_lengths[0] = sizeof(start_keyword_values);

 dsqcice(&communication_area,

 &command_length,

 &start_query_interface[0],

 &number_of_parameters,

 &keyword_lengths[0],

 &start_keywords[0],

 &data_lengths[0],

 &start_keyword_values[0],

 &char_data_type[0]);

 /**/

 /* Set numeric values into query using SET command */

 /**/

 number_of_parameters = 3;

 command_length = sizeof(set_global_variables);

 strcpy(set_keywords[0],"MYVAR01");

 strcpy(set_keywords[1],"SHORT");

 strcpy(set_keywords[2],"MYVAR03");

 keyword_lengths[0] = SIZE_VAL;

 keyword_lengths[1] = SIZE_VAL;

 keyword_lengths[2] = SIZE_VAL;

 data_lengths[0] = sizeof(long);

 data_lengths[1] = sizeof(long);

 data_lengths[2] = sizeof(long);

 set_values[0] = 20;

 set_values[1] = 40;

 set_values[2] = 84;

 dsqcice(&communication_area,

 &command_length,

 &set_global_variables[0],

 &number_of_parameters,

 &keyword_lengths[0],

 &set_keywords[0][0],

 &data_lengths[0],

 &set_values[0],

 &int_data_type[0]);

Figure 13. Sample C program (Part 2 of 3)

C Language Interface

98 System i: Query Management Programming

COBOL language interface in the query management CI

The query management CI is accessed by using normal COBOL function calls. The exact description of

each function call is provided in the query management COBOL communications macro DSQCOMMB.

The communications macro DSQCOMMB is unique for each operating system. Query management

provides an external subroutine called DSQCIB, which is used to run all query management commands.

The parameters that are passed on the call to DSQCIB determine whether program variables are being

passed. Program variables must be passed on the following query management commands:

 START

 SET GLOBAL

 GET GLOBAL

The other query management commands do not specify program variables.

DSQCIB function syntax in the query management CI

 CALL DSQCIB USING DSQCOMM, CMDLTH, CMDSTR.

Where:

v DSQCOMM is the structure DSQCOMM.

v CMDLTH is the length of the command string CMDSTR.

The length is specified as an integer "PIC 9(8)" variable.

v CMDSTR is the query management command to be processed.

The command string is specified as a character string of the length specified by CMDLTH.

DSQCIB extended function syntax for COBOL in the query

management CI

 CALL DSQCIB USING

 DSQCOMM CMDLTH CMDSTR

 PNUM VNLTH VNAME VLTH VALUE VTYPE.

Where:

v DSQCOMM is the structure DSQCOMM.

v CMDLTH is the length of the command string CMDSTR.

The length is specified as an integer "PIC 9(8)" variable.

 /**/

 /* Run a Query */

 /**/

 command_length = sizeof(run_query);

 dsqcic(&communication_area,&command_length,&run_query [0]);

 /**/

 /* Print the results of the query */

 /**/

 command_length = sizeof(print_report);

 dsqcic(&communication_area,&command_length,&print_report[0]);

 /**/

 /* End the query interface session */

 /**/

 command_length = sizeof(end_query_interface);

 dsqcic(&communication_area,&command_length,&end_query_interface[0]);

 exit(0);

 }

Figure 13. Sample C program (Part 3 of 3)

COBOL Language Interface

Chapter 7. Callable interface in query management 99

v CMDSTR is the query management command to be processed.

The command string is specified as a character string of the length specified by CMDLTH.

v PNUM is the number of command variables.

PNUM is specified as an integer "PIC 9(8)" variable.

v VNLTH is the length of each specified variable name.

The length of the variable name(s) is specified as an integer "PIC 9(8)" variable or variable array.

v VNAME is the query management variable name.

The variable name string is specified as a character or a structure of characters whose length is the

same as specified by VNLTH. An array of characters may be used, provided that all of the characters

are of the same length.

v VLTH is the length of each value associated with the variable.

The length of the associated values is specified as an integer "PIC 9(8)" variable or variable array.

v VALUE is the value associated with each variable.

The value string is specified as a character or a structure of characters or an integer "PIC 9(8)" variable

or variable array. The type is specified in the VTYPE parameter.

v VTYPE indicates the query management data type of the value string VALUE.

The value type string contains one of the following values, which is provided in the query

management communications macro:

 DSQ-VARIABLE-CHAR indicates that value is character.

 DSQ-VARIABLE-FINT indicates that value is integer "PIC 9(8)".

Interface communications area (DSQCOMM) for COBOL in the query

management CI

The query management interface communications area is part of the communications macro

DSQCOMMB. The interface communications area is described as a structure named DSQCOMM.

The interface communications area DSQCOM contains the information shown in Table 14. This

information must not be altered by the calling program.

 Table 14. DSQCOM programming information

Variable Type Length (bytes) Description

DSQRET Binary 4 bytes Integer that indicates the status of query

management processing after a command is

run.

DSQINS Binary 4 bytes Identifier that is established by query

management when processing the START

command.

DSQRES Character 44 bytes Reserved for future use.

DSQMSG Character 8 bytes Completion message ID.

DSQQMG Character 8 bytes Query message ID.

DSQSPE Character 8 bytes Parameter in error when START failed due to a

parameter error.

DSQCNL Character 1 byte Command cancel indicator that indicates

whether the user had canceled command

processing while query management was

running a command:

 DSQCLY ″VALUE 1″

 DSQCLN ″VALUE 0″

DSQRS2 Character 17 bytes Reserved for future use.

COBOL Language Interface

100 System i: Query Management Programming

Table 14. DSQCOM programming information (continued)

Variable Type Length (bytes) Description

DSQQDR Character 1 byte Query was derived from an IBM Query for

i5/OS QRYDFN.

 DSQDRY ″VALUE 1″

 DSQDRN ″VALUE 0″

DSQFDR Character 1 byte Form was derived from an IBM Query for

i5/OS QRYDFN.

 DSQDRY ″VALUE 1″

 DSQDRN ″VALUE 0″

DSQRS3 Character 156 bytes Reserved for future use.

DSQRS4 Character 256 bytes Reserved for future use.

DSQRS5 Character 256 bytes Reserved for future use.

DSQRS6 Character 256 bytes Reserved for future use.

Return codes for COBOL in the query management CI

Return codes are returned after each call to the query management CI. Return code values are described

by the data interface macro. For applications to be portable, values must be referred to by variable name

rather than by equated value because this value might be different on other systems.

Return code values for DSQ-RETURN-CODE are:

DSQ-SUCCESS

Successful processing of the request.

DSQ-WARNING

Normal completion with warnings.

DSQ-FAILURE

Command did not process correctly.

DSQ-SEVERE

Severe error: Query management session ended for the applicable instance. Because the query

management session ended, additional calls to query management cannot be made using this

instance ID.

Example 1 of COBOL query CI program in query management

Figure 14 on page 102 is an example of a COBOL language program written for the query management

CI.

COBOL Language Interface

Chapter 7. Callable interface in query management 101

**

 * The following is a VS COBOL II version of the query

 * callable interface *** DSQABFCO **.

 **

 IDENTIFICATION DIVISION.

 PROGRAM-ID. DSQABFCO.

 DATE-COMPILED.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 * Copy DSQCOMMB definition - contains query interface variables

 COPY DSQCOMMB.

 * Query interface commands

 01 STARTQI PIC X(5) VALUE "START".

 01 SETG PIC X(10) VALUE "SET GLOBAL".

 01 QUERY PIC X(12) VALUE "RUN QUERY Q1".

 01 REPT PIC X(21) VALUE "PRINT REPORT (FORM=F1".

 01 ENDQI PIC X(4) VALUE "EXIT".

 * Query command length

 01 QICLTH PIC 9(8) USAGE IS COMP-4.

 * Number of variables

 01 QIPNUM PIC 9(8) USAGE IS COMP-4.

 * Keyword variable lengths

 01 QIKLTHS.

 03 KLTHS PIC 9(8) OCCURS 10 USAGE IS COMP-4.

 * Value Lengths

 01 QIVLTHS.

 03 VLTHS PIC 9(8) OCCURS 10 USAGE IS COMP-4.

 * Start Command Keyword

 01 SNAMES.

 03 SNAME1 PIC X(7) VALUE "DSQSCMD".

 * Start Command Keyword Value

 01 SVALUES.

 03 SVALUE1 PIC X(8) VALUE "USERCMD1".

 * Set GLOBAL Command Variable Names to set

 01 VNAMES.

 03 VNAME1 PIC X(7) VALUE "MYVAR01".

 03 VNAME2 PIC X(5) VALUE "SHORT".

 03 VNAME3 PIC X(7) VALUE "MYVAR03".

 * Variable value parameters

 01 VVALUES.

 03 VVALS PIC 9(8) OCCURS 10 USAGE IS COMP-4.

 01 TEMP PIC 9(8) USAGE IS COMP-4.

Figure 14. Sample COBOL program (Part 1 of 2)

COBOL Language Interface

102 System i: Query Management Programming

Example 2 of COBOL query CI program in query management

Figure 15 on page 104 is an example of the query management CI COBOL communications macro that

has been tailored to fit the i5/OS environment.

 PROCEDURE DIVISION.

 *

 * Start a query interface session

 MOVE 0 TO QICLTH.

 INSPECT STARTQI TALLYING QICLTH FOR CHARACTERS.

 MOVE 0 TO TEMP.

 INSPECT SNAME1 TALLYING TEMP FOR CHARACTERS.

 MOVE TEMP TO KLTHS(1).

 MOVE 0 TO TEMP.

 INSPECT SVALUE1 TALLYING TEMP FOR CHARACTERS.

 MOVE TEMP TO VLTHS(1).

 MOVE 1 TO QIPNUM.

 CALL DSQCIB USING DSQCOMM, QICLTH, STARTQI,

 QIPNUM, QIKLTHS, SNAMES,

 QIVLTHS, SVALUES, DSQ-VARIABLE-CHAR.

 *

 * Set numeric values into query variables using SET GLOBAL command

 MOVE 0 TO QICLTH.

 INSPECT SETG TALLYING QICLTH FOR CHARACTERS.

 MOVE 0 TO TEMP.

 INSPECT VNAME1 TALLYING TEMP FOR CHARACTERS.

 MOVE TEMP TO KLTHS(1).

 MOVE 0 TO TEMP.

 INSPECT VNAME2 TALLYING TEMP FOR CHARACTERS.

 MOVE TEMP TO KLTHS(2).

 MOVE 0 TO TEMP.

 INSPECT VNAME3 TALLYING TEMP FOR CHARACTERS.

 MOVE TEMP TO KLTHS(3).

 MOVE 4 TO VLTHS(1).

 MOVE 4 TO VLTHS(2).

 MOVE 4 TO VLTHS(3).

 MOVE 20 TO VVALS(1).

 MOVE 40 TO VVALS(2).

 MOVE 84 TO VVALS(3).

 MOVE 3 TO QIPNUM.

 CALL DSQCIB USING DSQCOMM, QICLTH, SETG,

 QIPNUM, QIKLTHS, VNAMES,

 QIVLTHS, VVALUES, DSQ-VARIABLE-FINT.

 *

 * Run a Query

 MOVE 0 TO QICLTH.

 INSPECT QUERY TALLYING QICLTH FOR CHARACTERS.

 CALL DSQCIB USING DSQCOMM, QICLTH, QUERY.

 *

 * Print the results of the query

 MOVE 0 TO QICLTH.

 INSPECT REPT TALLYING QICLTH FOR CHARACTERS.

 CALL DSQCIB USING DSQCOMM, QICLTH, REPT.

 *

 * End the query interface session

 MOVE 0 TO QICLTH.

 INSPECT ENDQI TALLYING QICLTH FOR CHARACTERS.

 CALL DSQCIB USING DSQCOMM, QICLTH, ENDQI.

 STOP RUN.

Figure 14. Sample COBOL program (Part 2 of 2)

COBOL Language Interface

Chapter 7. Callable interface in query management 103

**

 * *

 * NAME: DSQCOMMB *

 * *

 * MODULE-TYPE: IBM COBOL query management interface *

 * include file *

 * *

 * PROCESSOR: COBOL *

 * *

 * DESCRIPTION: *

 * This include file contains the declarations needed *

 * by a COBOL application program for interfacing *

 * with the query management callable interface. *

 * *

 * Copyright: 5728-SS1 (C) COPYRIGHT IBM CORP. 1989 *

 * *

 **

 * Structure declare for communications area

 01 DSQCOMM.

 03 DSQ-RETURN-CODE PIC 9(8) USAGE IS BINARY VALUE 0.

 * * Function return code *

 03 DSQ-INSTANCE-ID PIC 9(8) USAGE IS BINARY VALUE 0.

 * * Identifier from START cmd *

 03 DSQ-RESERVE1 PIC X(44).

 * * Reserved area *

 03 DSQ-MESSAGE-ID PIC X(8).

 * * Completion message id *

 03 DSQ-Q-MESSAGE-ID PIC X(8).

 * * Query message ID *

 03 DSQ-START-PARM-ERROR PIC X(8).

 * * START parameter in error *

 03 DSQ-CANCEL-IND PIC X(1).

 * * 1 = Command canceled *

 * * 0 = Command not canceled *

 03 DSQ-RESERVE2 PIC X(17).

 * * Reserved space -- not for *

 * * application use *

Figure 15. Example DSQCOMMB (Part 1 of 2)

COBOL Language Interface

104 System i: Query Management Programming

RPG language interface in the query management CI

The query management callable interface is accessed by using normal RPG function calls. The exact

description of each function call is provided in the query management RPG communications include

member DSQCOM. Query management provides an external subroutine called DSQCIR, which is used to

run all query management commands. The parameters that are passed on the call to DSQCIR determine

whether program variables are being passed. Program variables must be passed on the following query

management commands:

 START

 SET GLOBAL

 GET GLOBAL

The other query management commands do not specify program variables.

 03 DSQ-QUERY-DERIVED PIC X(1).

 * * 1 = Query was derived from *

 * * i5/OS QRYDFN *

 * * 0 = Query was not derived *

 * * from i5/OS QRYDFN *

 03 DSQ-FORM-DERIVED PIC X(1).

 * * 1 = Form was derived from *

 * * i5/OS QRYDFN *

 * * 0 = Form was not derived *

 * * from i5/OS QRYDFN *

 03 DSQ-DELETE-ENV PIC 9(8) USAGE IS BINARY VALUE 0.

 * * Flag used to delete env. *

 03 DSQ-RESERVE3 PIC X(924).

 * * Reserved space -- not for *

 * * application use *

 * Return code values for DSQ-RETURN-CODE

 01 DSQ-SUCCESS PIC 9(8) USAGE IS BINARY VALUE 0.

 01 DSQ-WARNING PIC 9(8) USAGE IS BINARY VALUE 4.

 01 DSQ-FAILURE PIC 9(8) USAGE IS BINARY VALUE 8.

 01 DSQ-SEVERE PIC 9(8) USAGE IS BINARY VALUE 16.

 * Callable Interface program name

 01 DSQCIB PIC X(7) VALUE "QQXMAIN".

 * Values for variable type on CALL parameter

 01 DSQ-VARIABLE-CHAR PIC X(4) VALUE "CHAR".

 01 DSQ-VARIABLE-FINT PIC X(4) VALUE "FINT".

 * Values for query/form derived field in communications area

 01 DSQ-DERIVED-NO PIC X(1) VALUE "0".

 01 DSQ-DERIVED-YES PIC X(1) VALUE "1".

 * Values for the cancel indicator field in communications area

 01 DSQ-CANCEL-YES PIC X(1) VALUE "1".

 01 DSQ-CANCEL-NO PIC X(1) VALUE "0".

 * Yes/No indicator. This indicator can be used

 * to test the values

 * returned for the following global variables:

 * DSQCATTN - Last command cancel indicator.

 * DSQAROWC - Current data completed indicator.

 *

 01 DSQ-YES PIC X(1) VALUE "1".

 01 DSQ-NO PIC X(1) VALUE "0".

Figure 15. Example DSQCOMMB (Part 2 of 2)

RPG Language Interface

Chapter 7. Callable interface in query management 105

DSQCIR function syntax for RPG in the query management CI

 C CALL DSQCIR

 C PARM DSQCOM

 C PARM CMDLTH

 C PARM CMDSTR

Where:

v DSQCOM is the structure DSQCOM.

v CMDLTH is the length of the command string CMDSTR.

The length is specified as a 4-byte binary field.

v CMDSTR is the query management command to be processed.

The command string is specified as a character string of the length specified by CMDLTH.

DSQCIR extended function syntax for RPG in the query management

CI

 C CALL DSQCIR

 C PARM DSQCOM

 C PARM CMDLTH

 C PARM CMDSTR

 C PARM 1 PNUM

 C PARM KLTH

 C PARM KWORD

 C PARM VLTH

 C PARM VALUE

 C PARM VTYPE

Where:

v DSQCOM is the structure DSQCOM.

v CMDLTH is the length of the command string CMDSTR.

The length is specified as a 4-byte binary field.

v CMDSTR is the query management command to be processed.

v The command string is specified as a character string of the length specified by CMDLTH.

v PNUM is the number of command keywords.

PNUM is specified as a 4-byte binary field.

v KLTH is the length of each specified keyword.

The length of the keyword or keywords is specified as a 4-byte binary field.

v KWORD is the query management keyword or keywords.

The keyword string is specified as a character or a structure of characters whose length are the same as

specified by KLTH. An array of characters may be used, provided all of the characters are of the same

length.

v VLTH is the length of each value associated with the keyword.

The length of the associated values is specified as a 4-byte binary field.

v VALUE is the value associated with each keyword.

The value string is specified as a character or a structure of characters or a 4-byte binary field. The type

is specified in the VTYPE parameter.

v VTYPE indicates the query management data type of the value string VALUE.

The value type string contains one of the following values, which is provided in the query

management communications include member:

 DSQVCH indicates that value is character.

 DSQVIN indicates that value is an integer (4-byte binary).

RPG Language Interface

106 System i: Query Management Programming

Interface communications area (DSQCOMMR) for RPG in the query

management CI

The query management interface communications area is part of the communications include member

DSQCOMMR. The interface communications area is described as a structure named DSQCOM.

The CI communications area DSQCOM contains the following information that must not be altered by

the calling program:

DSQRET Binary (4 bytes)

Integer that indicates the status of query management processing after a command is run.

DSQINS Binary (4 bytes)

Identifier that is established by query management during processing of the START command.

DSQRS1 Character (44 bytes)

Reserved for future use.

DSQMSG Character (8 bytes)

Completion message ID.

DSQQMG Character (8 bytes)

Query message ID.

DSQSPE Character (8 bytes)

Parameter in error when START failed due to a parameter error.

DSQCNL Character (1 byte)

Command cancel indicator that indicates whether the user had canceled command processing

while query management was running a command:

 DSQCLY "VALUE 1"

 DSQCLN "VALUE 0"

DSQQDR Character (1 byte)

Whether the query information used was derived from an IBM Query for i5/OS definition.

 DSQDRY "VALUE 1" — Object was derived

 DSQDRN "VALUE 0" — Object was not derived

DSQFDR Character (1 byte)

Whether the form information used was derived from an IBM Query for i5/OS definition.

 DSQDRY "VALUE 1" — Object was derived

 DSQDRN "VALUE 0" — Object was not derived

DSQRS2 Character (23 bytes)

Reserved for future use.

DSQRS3 Character (156 bytes)

Reserved for future use.

Return codes for RPG in the query management CI

Return codes are returned after each call to the query management CI. Return code values are described

by the data interface. For applications to be portable, values must be referred to by variable name rather

than the equated value because this value might be different on other systems. Return code values for

DSQRET are:

DSQSUC

Successful processing of the request.

DSQWAR

Normal completion with warnings.

RPG Language Interface

Chapter 7. Callable interface in query management 107

DSQFAI

Command did not process correctly.

DSQSEV

Severe error: Query management session ended for the applicable instance. Because the query

management session ended, additional calls to query management cannot be made using this

instance ID.

Example 1 of RPG language query CI program in the query

management CI

Figure 16 is an example of an RPG language program written for the query management CI.

 **

 * *

 * SAMPLE RPG PROGRAM USING QUERY INTERFACE *

 * -- *

 * *

 * 1) Include member DSQCOMMR contains the communications *

 * area to be passed to the query interface. *

 * 2) Command name lengths, command names, *

 * variable name lengths, variable names, *

 * variable value lengths, variable values, *

 * are loaded as compile time arrays. *

 * 3) It is necessary to pass all interface lengths and *

 * numeric variable information in binary format. *

 * *

 **

 H

 *

 * Compile time arrays of command name lengths and values

 * variable name lengths and values

 * variable content lengths and values

 *

 E CNL 1 7 9 0 CNV 25 commands

 E VNL 1 3 9 0 VNV 7 variable names

 E VCL 1 3 9 0 VCV 9 0 variable values

 *

 I DS

 I B 1 280CNL

 I DS

 I B 1 120VNL

 I DS

 I B 1 120VCL

 I DS

 I B 1 40BINARY

Figure 16. Sample RPG program (Part 1 of 3)

RPG Language Interface

108 System i: Query Management Programming

*

 * Pull in the communications area

 *

 I/COPY DSQCOMMR

 *

 * Start a query interface session:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM CNL,1 command length

 C PARM CNV,1 START

 C PARM 1 BINARY # keywords

 C PARM CNL,6 keyword length

 C PARM CNV,6 DSQSCMD

 C PARM CNL,7 value length

 C PARM CNV,7 USERCMD1

 C PARM DSQVCH DATA 4 CHAR

 *

 * Set numeric values into query variables using SET GLOBAL command:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM CNL,2 command length

 C PARM CNV,2 SET GLOBAL

 C PARM 3 BINARY # variables

 C PARM VNL name lengths

 C PARM VNV name values

 C PARM VCL variable lengths

 C PARM VCV variable values

 C PARM DSQVIN DATA FINT

 *

 * Run a query:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM CNL,3 command length

 C PARM CNV,3 RUN QUERY Q1

 *

 * Print the results of the query:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM CNL,4 command length

 C PARM CNV,4 PRINT REPORT

 * (FORM=F1

 * End the query interface session:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM CNL,5 command length

 C PARM CNV,5 EXIT

 *

 C SETON LR

 *

Figure 16. Sample RPG program (Part 2 of 3)

RPG Language Interface

Chapter 7. Callable interface in query management 109

Example 2 of RPG language query CI program in the query

management CI

Figure 17 is an example of the query management CI RPG communications include member. This version

of the communications include member has been tailored for the i5/OS system environment.

** CNL/CNV Command lengths and command values

000000005START

000000010SET GLOBAL

000000012RUN QUERY Q1

000000021PRINT REPORT (FORM=F1

000000004EXIT

000000007DSQSCMD

000000008USERCMD1

** VNL/VNV Variable name lengths and variable names

000000007MYVAR01

000000007MYVAR02

000000007MYVAR03

** VCL/VCV Variable value lengths and variable values

000000004000000020

000000004000000040

000000004000000084

Figure 16. Sample RPG program (Part 3 of 3)

 I***

 I* *

 I* NAME: DSQCOMMR *

 I* *

 I* MODULE-TYPE: IBM RPG/400 query management include file *

 I* *

 I* PROCESSOR: RPG *

 I* *

 I* DESCRIPTION: *

 I* This include file contains the declarations needed *

 I* by an RPG/400 application program for interfacing *

 I* with the query management callable interface. *

 I* *

 I* Copyright: 5728-SS1 (C) COPYRIGHT IBM CORP. 1989 *

 I* *

 I***

Figure 17. Example DSQCOMMR (Part 1 of 3)

RPG Language Interface

110 System i: Query Management Programming

I***

 I* QUERY INTERFACE INCLUDE *

 I* *

 I* DSQCOM Definition, contains QUERY interface variables: *

 I* *

 I* DSQRET - Status of QUERY processing *

 I* DSQINS - QUERY identifier *

 I* DSQRS1 - Reserved *

 I* DSQMSG - Completion message-ID *

 I* DSQQMG - QUERY message ID *

 I* DSQSPE - START fail parameter error *

 I* DSQCNL - Command cancel indicator *

 I* DSQQDR - Query was derived from i5/OS QRYDFN *

 I* DSQFDR - Form was derived from i5/OS QRYDFN *

 I* DSQDEN - Environment deletion indicator *

 I* DSQRS2 - Reserved *

 I* DSQRS3 - Reserved *

 I* DSQRS4 - Reserved *

 I* DSQRS5 - Reserved *

 I* DSQRS6 - Reserved *

 I* *

 I***

 IDSQCOM DS I B 1 40DSQRET

 I B 5 80DSQINS

 I 9 52 DSQRS1

 I 53 60 DSQMSG

 I 61 68 DSQQMG

 I 69 76 DSQSPE

 I 77 77 DSQCNL

 I 78 94 DSQRS2

 I 95 95 DSQQDR

 I 96 96 DSQFDR

 I 97 100 DSQDEN

 I 101 356 DSQRS3

 I 357 612 DSQRS4

 I 613 868 DSQRS5

 I 8691024 DSQRS6

 I*

Figure 17. Example DSQCOMMR (Part 2 of 3)

RPG Language Interface

Chapter 7. Callable interface in query management 111

Using subprograms to access CI in query management

You can use subprograms to access the query management callable interface (CI). Subprograms relieve

you of most of the data manipulation necessary to access the CI. This section describes subprograms and

how to use them in handling queries.

This section describes the listings for seven subprograms that represent the more common functions

performed. Create different subprograms if you find there are other commonly used functions in your

particular environment.

When using the subprograms, consider the following issues:

v If the calling program calls the subprogram only once (or infrequently), end the subprogram when

returning to the calling program. Refer to the RPG/400 User’s Guide for more details on calling other

programs.

 I* DSQRET - DSQ return code meanings

 I* SUCCESS -- value 0

 I* WARNING -- value 4

 I* FAILURE -- value 8

 I* SEVERE -- value 16

 I*

 I 0 C DSQSUC

 I 4 C DSQWAR

 I 8 C DSQFAI

 I 16 C DSQSEV

 I*

 I* DSQCNL - DSQ cancel indicator meanings

 I* CANCEL YES -- value ’1’

 I* CANCEL NO -- value ’0’

 I*

 I ’1’ C DSQCLY

 I ’0’ C DSQCLN

 I*

 I* DSQQDR/DSQFDR - DSQ QRYDFN derivation indicator meanings

 I* DERIVED YES -- value ’1’

 I* DERIVED NO -- value ’0’

 I*

 I ’1’ C DSQDRY

 I ’0’ C DSQDRN

 I*

 I* DSQYES/DSQNO - DSQ constants for the values returned

 I* for the following global variables:

 I* DSQCATTN - Last command cancel indicator.

 I* DSQAROWC - Current data completed indicator.

 I*

 I ’1’ C DSQYES

 I ’0’ C DSQNO

 I* I* DSQCIR - Interface program call name definition

 I*

 I ’QQXMAIN’ C DSQCIR

 I*

 I* DSQVCH - contains constant value ’CHAR’

 I* DSQVIN - contains constant value ’FINT’

 I*

 I ’CHAR’ C DSQVCH

 I ’FINT’ C DSQVIN

 I*

 I* END OF DSQCOM QUERY INCLUDE

 I**

Figure 17. Example DSQCOMMR (Part 3 of 3)

RPG Language Interface

112 System i: Query Management Programming

v Once the CI is started, an instance identifier is allocated. Therefore, the data structure DSQCOM is

passed from program to program. You must pass this instance identifier to the CI for each access under

that session.

v If the application programs using these subprograms are run on an i5/OS operating system different

from the one that created the subprograms, object code versions of these subprograms need to be on

the system that runs the programs.

v If the application programs that use these subprograms are run on operating systems other than i5/OS,

object code versions of programs that perform the same function must be created on that system.

Note: The code described in this chapter is written in the RPG/400 language and does not necessarily

compile on operating systems other than i5/OS.

v The code provided in this chapter is written in RPG, but you can develop similar functions in other

programming languages. You can also access the RPG/400 subprograms, once compiled, from a

COBOL program.

The following sections describe how you can use subprograms to accomplish the commonly used query

management functions. Following each description is the example subprogram created to accomplish the

query management task.

START subprogram in the query management CI

The values for the keywords DSQSMODE, DSQSCMD, DSQSRUN, and DSQSNAME are passed to this

program as a string of 132 characters. The first 33 characters represent the DSQSMODE keyword value,

the next 33 characters represent the DSQSCMD keyword value, the next 33 the DSQSRUN keyword

value, and the last 33 the DSQSNAME keyword value. Left-justify the keyword values you type. If a

keyword value is not used, it still must be passed, but as a string of 33 blank characters.

The START subprogram reads the passed keyword values string, tests for blank values, and calculates the

lengths of the values. It also strings together the START command, keywords, and keyword values with

the necessary lengths and calls the programmable interface. The interface is started and the START

subprogram is ended with control returned to the calling program.

RPG Language Interface

Chapter 7. Callable interface in query management 113

**

 * *

 * START COMMAND CPI QUERY INTERFACE HANDLER *

 * --- *

 * *

 * 1) Include member DSQCOMMR contains the communications *

 * area to be passed to the query management interface. *

 * 2) This program handles the START CPI QM interface *

 * command. *

 * 3) The keyword information is passed to this program in the *

 * form of four values, which are the four keyword values *

 * to be passed to query management. This program *

 * calculates the length of each keyword name and keyword *

 * value and strings the necessary information into arrays *

 * for passing to the query management callable interface. *

 * *

 **

 H

 *

 E LTH 1 4 9 0 KEY 8 lengths of k/wds

 E STA 4 33 k/wd vals passed

 E KEL 4 9 0 keyword lengths

 E KEN 30 1 keyword names

 E VAL 4 9 0 value lengths

 E VAV 81 1 value values

 E TST 33 1 test value length

 *

 I DS

 I B 1 40BIN1

 I B 5 80BIN2

 I B 9 240KEL

 I B 25 400VAL

 I/COPY BPLIB/QRPGSRC,DSQCOMMR

 *

 * receive the passed start command keyword values:

 *

 C *ENTRY PLIST

 C PARM DSQCOM comms area

 C PARM STA keywords passed

 *

 * prepare keyword name lengths, names, value lengths, values

 *

 C Z-ADD1 Y 20 initialize

 C Z-ADD1 W 20 counters

 C Z-ADD0 KEL and numeric

 C Z-ADD0 VAL arrays

Figure 18. Example START subprogram (Part 1 of 2)

RPG Language Interface

114 System i: Query Management Programming

SETC subprogram in the query management CI

The SETC subprogram performs the SET GLOBAL variable function for a character value to be passed to

the CI. The SETC subprogram handles one variable at a time. The variable name and value are passed to

this program as two separate parameters. The name can be up to 10 characters long, and the value up to

20 characters long.

This subprogram calculates the necessary lengths, strings the information together, and calls the

programmable interface. The variable is set as CHAR data type, and control then returns to the calling

program.

Note: The SETC subprogram is not ended because it may be called a number of times in the session.

 *

 C V DOUEQ4 look at each

 C ADD 1 V 10 passed keyword

 C STA,V COMP *BLANKS 50value & process

 C *IN50 IFEQ ’0’ if not blank

 *

 C ADD 1 X 10 keyword name

 C MOVE LTH,V KEL,X lengths array

 *

 C ’ ’ LOKUPKEN,Y 60 string keyword

 C MOVE KEY,V WORK1 8 name into

 C MOVEAWORK1 KEN,Y names array

 *

 C MOVEASTA,V TST find keyword

 C Z-ADD1 Z 20 value length

 C ’ ’ LOKUPTST,Z 61 and move

 C 61 SUB 1 Z to keyword

 C N61 Z-ADD33 Z value lengths

 C Z-ADDZ VAL,X array

 *

 C ’ ’ LOKUPVAV,W 62 string keyword

 C MOVE STA,V WORK2 33 value into

 C MOVEAWORK2 VAV,W values array

 *

 C END

 C END

 *

 * start the query interface session:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM 5 BIN1 command length

 C PARM ’START’ CHAR1 5 START

 C PARM X BIN2 # keywords

 C PARM KEL keyword lengths

 C PARM KEN keyword names

 C PARM VAL value lengths

 C PARM VAV values

 C PARM DSQVCH CHAR2 4 CHAR

 *

 C MOVE ’1’ *INLR

 *

** start DSQ keyword name lengths and names loaded as compile time array

000000008DSQSMODE

000000007DSQSCMD

000000007DSQSRUN

000000008DSQSNAME

Figure 18. Example START subprogram (Part 2 of 2)

RPG Language Interface

Chapter 7. Callable interface in query management 115

**

 * *

 * SET GLOBAL COMMAND (CHARACTER VARIABLE) *

 * CPI QUERY INTERFACE HANDLER *

 * --------------------------------------- *

 * *

 * 1) Include member DSQCOMMR contains the communications *

 * area to be passed to the Query Interface. *

 * 2) This program handles the SET GLOBAL Query Interface *

 * command for variable values to be passed to the *

 * interface as CHAR type.

 * 3) It reads the variable name and value, calculates the *

 * length of each, and passes the information to query *

 * management. *

 * 4) The program handles one variable at a time. The length *

 * of the variable name can be a maximum of 10 characters *

 * and the length of the variable value can be a maximum *

 * of 20 characters. *

 * *

 **

 H

 *

 E TNL 10 1 test name length

 E TVL 20 1 test value length

 *

 I ’SET GLOBAL’ C CMD

 *

 I DS

 I B 1 40BIN1

 I B 5 80BIN2

 I B 9 120BIN3

 I B 13 160BIN4

 I/COPY BPLIB/QRPGSRC,DSQCOMMR

 *

 * receive the passed variable name and value:

 *

 C *ENTRY PLIST

 C PARM DSQCOM comms area

 C PARM VARNAM 10 variable name

 C PARM VARVAL 20 variable value

 *

 * calculate the variable name length and variable value length:

 *

 C MOVEAVARNAM TNL

 C Z-ADD1 X 20 X = last

 C ’ ’ LOKUPTNL,X 60 non blank

 C 60 SUB 1 X character

 C N60 Z-ADD10 X in name

Figure 19. Example SETC subprogram (Part 1 of 2)

RPG Language Interface

116 System i: Query Management Programming

SETA subprogram in the query management CI

The SETA subprogram performs the SET GLOBAL variable function for a character value to be enclosed

in apostrophes and then passed to the CI. This function is required when creating a query that compares

a data item to a constant character value (DEPT = ’ACCT’). The variable name and value are passed to

this program as two separate parameters. The name can be up to 10 characters long and the value up to

20 characters long.

This program encloses the value in apostrophes, calculates the necessary lengths, strings the information

together, and calls the programmable interface. The variable is set as the CHAR data type, and control

then returns to the calling program.

Note: The SETA program is not ended because it may be called a number of times in the session.

 *

 C Z-ADD20 Y 20 if value

 C VARVAL IFNE *BLANKS blank pass

 C MOVEAVARVAL TVL 20 blanks

 C AGAIN TAG

 C ’ ’ COMP TVL,Y 61 Y = last

 C 61 SUB 1 Y non blank

 C 61 GOTO AGAIN character

 C END in value

 *

 * set the global variables:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM 10 BIN1 command length

 C PARM CMD CHAR1 10 SET GLOBAL

 C PARM 1 BIN2 # variables

 C PARM X BIN3 var name length

 C PARM VARNAM variable name

 C PARM Y BIN4 var value lngth

 C PARM VARVAL variable value

 C PARM DSQVCH CHAR2 4 CHAR

 *

 C RETRN

Figure 19. Example SETC subprogram (Part 2 of 2)

RPG Language Interface

Chapter 7. Callable interface in query management 117

**

 * *

 * SET GLOBAL COMMAND (APOSTROPHE ENCLOSED CHARACTER *

 * VARIABLE) CPI QUERY INTERFACE HANDLER *

 * --- *

 * *

 * 1) Include member DSQCOMMR contains the communications *

 * area to be passed to the query management interface. *

 * 2) This program handles the SET GLOBAL interface *

 * command for variable values to be enclosed in *

 * apostrophes and passed to the interface as CHAR type. *

 * 3) It reads the variable name and value, calculates the *

 * length of each, encloses the value in apostrophes, *

 * and passes the information to query management. *

 * 4) The program handles one variable at a time. The length *

 * of the variable name can be a maximum of 10 characters *

 * and the length of the variable value can be a maximum *

 * of 20 characters. *

 * *

 **

 H

 *

 E TNL 10 1 test name length

 E TVL 22 1 test value length

 *

 I ’SET GLOBAL’ C CMD

 *

 I DS

 I B 1 40BIN1

 I B 5 80BIN2

 I B 9 120BIN3

 I B 13 160BIN4

 I/COPY BPLIB/QRPGSRC,DSQCOMMR

 *

 * receive the passed variable name and value:

 *

 C *ENTRY PLIST

 C PARM DSQCOM comms area

 C PARM VARNAM 10 variable name

 C PARM VARVAL 20 variable value

 *

 * calculate the variable name length and variable value length:

 *

 C MOVEAVARNAM TNL

 C Z-ADD1 X 20 X = last

 C ’ ’ LOKUPTNL,X 60 non blank

 C 60 SUB 1 X character

 C N60 Z-ADD10 X in name

Figure 20. Example SETA subprogram (Part 1 of 2)

RPG Language Interface

118 System i: Query Management Programming

SETN subprogram in the query management CI

The SETN subprogram performs the SET GLOBAL variable function for a numeric value (nonbinary) to

have a decimal point and trailing sign inserted and then passed to the CI. This function is required when

creating a query that compares a numeric data item to a constant value (AMOUNT = 525.30-).

The variable name, the variable value, and the number of decimal positions are passed to this program as

three separate parameters. The name can be up to 10 characters long, the value must be 15 numeric digits

long, and the number of decimal places 2 numeric digits long. The value and decimal positions must be

passed as standard numeric data (do not left-justify before passing). The subprogram inserts a decimal

point if specified, adds a minus sign if the number is negative, calculates the necessary lengths, strings

the information together, and calls the programmable interface. The variable is set as CHAR data type,

and control returns to the calling program.

Note: The SETN subprogram is not ended because it may be called a number of times in the session.

 *

 C MOVE ’’ TVL,1 set up first

 C MOVEAVARVAL TVL,2 apostrophe

 C Z-ADD21 Y 20

 C AGAIN TAG Y = last

 C ’ ’ COMP TVL,Y 61 blank

 C 61 SUB 1 Y character

 C 61 GOTO AGAIN

 C ADD 1 Y set up last

 C MOVE ’’ TVL,Y apostrophe

 *

 * set the global variables:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM 10 BIN1 command length

 C PARM CMD CHAR1 10 SET GLOBAL

 C PARM 1 BIN2 # variables

 C PARM X BIN3 var name length

 C PARM VARNAM variable name

 C PARM Y BIN4 var value lngth

 C PARM TVL variable value

 C PARM DSQVCH CHAR2 4 CHAR

 *

 C RETRN

Figure 20. Example SETA subprogram (Part 2 of 2)

RPG Language Interface

Chapter 7. Callable interface in query management 119

**

 * *

 * SET GLOBAL COMMAND (NUMERIC - NONBINARY INTEGER) *

 * CPI QUERY INTERFACE HANDLER *

 * --- *

 * *

 * 1) Include member DSQCOMMR contains the communications *

 * area to be passed to the query management interface. *

 * 2) This program handles the SET GLOBAL interface *

 * command for variable values to be passed to the *

 * interface as numeric data CHAR type. *

 * 3) It reads the variable name and value, calculates the *

 * length of each, inserts the decimal point and leading *

 * negative sign (if required), and passes the information *

 * to query management. *

 * 4) The program handles one variable at a time. The length *

 * of the variable name can be a maximum of 10 characters *

 * and the length of the variable value can be a maximum *

 * of 15 numeric digits (plus sign and decimal point). *

 * *

 **

 H

 *

 E TNL 10 1 test name length

 E TVL 17 1 variable value

 *

 I ’SET GLOBAL’ C CMD

 *

 I DS

 I B 1 40BIN1

 I B 5 80BIN2

 I B 9 120BIN3

 I B 13 160BIN4

 I/COPY BPLIB/QRPGSRC,DSQCOMMR

 *

 * receive the passed variable name and value:

 *

 C *ENTRY PLIST

 C PARM DSQCOM comms area

 C PARM VARNAM 10 variable name

 C PARM VARVAL 150 variable value

 C PARM VARDEC 20 decimal places

 *

 * calculate the variable name length:

 *

 C MOVEAVARNAM TNL

 C Z-ADD1 X 20 X = last

 C ’ ’ LOKUPTNL,X 60 non blank

 C 60 SUB 1 X character

 C N60 Z-ADD10 X in name

Figure 21. Example SETN subprogram (Part 1 of 2)

RPG Language Interface

120 System i: Query Management Programming

RUNQ subprogram in the query management CI

The RUNQ subprogram activates the RUN QUERY interface. The query name and form name are passed

to the program as a string of 42 characters. The first 21 characters constitute the query name, and the last

21 characters are the form name.

The query name and form name must be left-justified. If the form is not being used, positions 22 to 42 of

the string must still be passed, but as blank characters.

The RUNQ subprogram reads the passed query and form names, tests for blank forms, calculates lengths,

formats the RUN QUERY command, and calls the programmable interface. After the query is run, the

RUNQ subprogram returns control to its calling program.

Note: The RUNQ subprogram is not ended because it may be called a number of times in the session.

 *

 * set up the variable with decimal point and leading minus sign:

 *

 C MOVE *BLANKS TVL Clear array

 C MOVE VARVAL VARCHA 15 Setup as alpha

 C VARVAL COMP 0 61 Negative value

 C 61 MLLZO’8’ VARCHA so strip sign

 C*

 C VARDEC IFEQ 0 * Processing

 C MOVEAVARCHA TVL,3 * if value

 C 61 MOVE ’-’ TVL,2 * has no

 C GOTO PASS * decimals

 C END *

 C*

 C MOVEAVARCHA TVL,2 * Processing

 C 61 MOVE ’-’ TVL,1 * if value

 C Z-ADD16 Y 20 * has

 C Z-ADD17 Z 20 * decimals

 C AGAIN TAG *

 C MOVE TVL,Y TVL,Z * Move each

 C SUB 1 VARDEC * array

 C VARDEC IFNE 0 * position

 C SUB 1 Y * over one

 C SUB 1 Z * place until

 C GOTO AGAIN * decimal

 C END * location

 C MOVE ’.’ TVL,Y * is reached

 C*

 C PASS TAG

 *

 * set the Global Variables:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM 10 BIN1 command length

 C PARM CMD CHAR1 10 SET GLOBAL

 C PARM 1 BIN2 # variables

 C PARM X BIN3 var name length

 C PARM VARNAM variable name

 C PARM 17 BIN4 var value lngth

 C PARM TVL variable value

 C PARM DSQVCH CHAR2 4 CHAR

 *

 C RETRN

Figure 21. Example SETN subprogram (Part 2 of 2)

RPG Language Interface

Chapter 7. Callable interface in query management 121

**

 * *

 * RUN QUERY COMMAND CPI QUERY INTERFACE HANDLER *

 * --- *

 * *

 * 1) Include member DSQCOMMR contains the communications *

 * area to be passed to the query management interface. *

 * 2) This program handles the RUN QUERY interface command. *

 * It reads the passed query name and form information, *

 * reformats it and then passes the information to query *

 * management. *

 * *

 **

 H

 *

 E VAL 59 1 value to pass

 *

 IRUNQ DS

 I 1 21 QNAM

 I 22 42 FNAM

 I DS

 I B 1 40BIN1

 I/COPY BPLIB/QRPGSRC,DSQCOMMR

 *

 * receive the passed run query command information:

 *

 C *ENTRY PLIST

 C PARM DSQCOM comms area

 C PARM RUNQ query and form

 *

 * prepare the run query command:

 *

 C MOVEA’RUN’ VAL Set up RUN

 C MOVEA’QUERY’ VAL,5 QUERY and

 C MOVEAQNAM VAL,11 Query name

 C Z-ADD12 X 20 Set array index

Figure 22. Example RUNQ subprogram (Part 1 of 2)

 *

 C FNAM IFNE *BLANKS Only if form

 C ’ ’ LOKUPVAL,X 60Find next blank

 C ADD 1 X leave a space &

 C MOVEA’(FORM=’ VAL,X insert (FORM=

 C ’ ’ LOKUPVAL,X 60Find next blank

 C MOVEAFNAM VAL,X form name

 C END

 *

 C ’ ’ LOKUPVAL,X 61Find last blank

 C 61 SUB 1 X Last non blank

 C N61 Z-ADD59 X No blanks left

 *

 * process the run query command:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM X BIN1 command length

 C PARM VAL command

 *

 C RETRN

Figure 22. Example RUNQ subprogram (Part 2 of 2)

RPG Language Interface

122 System i: Query Management Programming

RUNP subprogram in the query management CI

The RUNP subprogram activates the RUN PROC interface. The procedure name is passed to the program

as a string of 33 characters. The procedure name must be left-justified. The RUNP subprogram reads the

passed procedure name, calculates lengths, formats the RUN PROC command, and calls the

programmable interface. After the procedure is run, the RUNP subprogram returns control to the calling

program.

Note: The RUNP subprogram is not ended because it may be called a number of times in the session.

EXIT subprogram in the query management CI

The EXIT subprogram requires no additional parameters to the DSQCOM communications area. When

called, it ends the query interface, ends itself, then returns to the program that called it.

 **

 * *

 * RUN PROC COMMAND CPI QUERY INTERFACE HANDLER *

 * -- *

 * *

 * 1) Include member DSQCOMMR contains the communications *

 * area to be passed to the query management interface. *

 * 2) This program handles the RUN PROC interface command. *

 * It reads the passed procedure name and form information, *

 * reformats it, calculates the length, then passes the *

 * information to query management. *

 * *

 **

 H

 *

 E VAL 42 1 value to pass

 *

 I DS

 I B 1 40BIN1

 I/COPY BPLIB/QRPGSRC,DSQCOMMR

 *

 * receive the passed run procedure command information:

 *

 C *ENTRY PLIST

 C PARM DSQCOM comms area

 C PARM RUNP 33 procedure name

 *

 * prepare the run procedure command:

 *

 C MOVEA’RUN’ VAL Set up RUN

 C MOVEA’PROC’ VAL,5 PROC and

 C MOVEARUNP VAL,10 Procedure name

 *

 C Z-ADD11 X 20 Set array index

 C ’ ’ LOKUPVAL,X 60Find last blank

 C 60 SUB 1 X Last non blank

 C N60 Z-ADD42 X No blanks left

 *

 * process the run procedure command:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM X BIN1 command length

 C PARM VAL command

 *

 C RETRN

Figure 23. Example RUNP subprogram

RPG Language Interface

Chapter 7. Callable interface in query management 123

**

 * *

 * EXIT COMMAND CPI QUERY INTERFACE HANDLER *

 * -- *

 * *

 * 1) Include member DSQCOMMR contains the communications *

 * area to be passed to the query management interface. *

 * 2) This program handles the EXIT interface command. *

 * It passes to query management the command length *

 * and command. *

 * *

 **

 H

 *

 I DS

 I B 1 40BIN1

 I/COPY BPLIB/QRPGSRC,DSQCOMMR

 *

 * receive the passed communications area:

 *

 C *ENTRY PLIST

 C PARM DSQCOM comms area

 *

 * call the interface and end the session:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM 4 BIN1 command length

 C PARM ’EXIT’ DATA 4 command

 *

 C MOVE ’1’ *INLR end program

Figure 24. Example EXIT subprogram

RPG Language Interface

124 System i: Query Management Programming

Chapter 8. Exported and imported objects in query

management

You can export certain query management objects to manipulate them with an editor or an application or

to transport them from one environment to another. The objects can be exported by the same or another

query product. You cannot export the contents of a sort sequence table associated with a *QMQRY object.

The following sections describe the formats for exporting a query, procedure, and form object.

Note: Query management queries with the attribute PROMPT are exported in the same way as queries

with the attribute SQL. See Query Manager Use for information about prompted queries.

General object formats in query management

This section presents query management formats that are common across a number of systems. Other

formats, specific to each query management object, are discussed in later sections.

Comments in externalized objects in query management

An object comment becomes an externalized object when it is displayed either online or on printed copy.

An object comment is allowed in an externalized query management form, query, or procedure object.

The comment must be specified as a V record with a field number of 1001 and a maximum length of 50.

A comment longer than 50 characters is truncated. The comment is generated in the externalized object

when it is exported. The comment record, if present, must immediately follow the H record. The H

record type field must be:

v F for a form.

v Q for a query.

v P for a procedure.

Follow this sequence when importing to determine which text description is used on the query

management object:

v If the COMMENT= option is specified, the value for this option will be used.

v If member text is in the member, the member text will be used.

v If a comment is in the object, this comment will be used.

v If no comment exists, the text description will be blank.

Follow this sequence when exporting to determine which text description is written to the externalized

query management object:

v If the COMMENT= option is specified, the value on this option will be used.

v If the COMMENT= option is not specified, the text description in the query management object will be

used.

The H and V records are the only parts of the encoded format that are allowed for query or procedure

objects. Attempting to use other record types such as T, R, E, and * will generate unpredictable results.

Comments may not span multiple lines and may not be used inside other comments. A comment begins

with '/*' and ends with '*/'.

The procedures have object and user comments. An object comment in a procedure must be inside

comment delimiters with no intervening blanks between the start comment and the record identifier. User

comments are ignored at run time.

© Copyright IBM Corp. 1998, 2008 125

The following is an example of a procedure with both an object comment and some user comments:

 /*H QM4 01 P 01 E V W E R 01 03 90/07/24 13:30 */

 /*V 1001 016 SALES PROCEDURE */

 'IMPORT QUERY SALES FROM QRYSRC'

 'RUN QUERY SALES' /*Total sales query*/

 'PRINT REPORT' /*Management report*/

The following is an example of an object comment in a query:

 H QM4 01 Q 01 E V W E R 01 03 90/06/38 01:25

 V 1001 011 SALES QUERY

 SELECT SALARY FROM SALESFILE WHERE

 SALARY > 50000

External formats in query management

The summary below explains the formats for objects. Respective formats for these objects are discussed in

later sections.

Procedures

Panel format

SQL Queries

Panel format

Form Encoded format

Panel format in query management

This format consists of a number of fixed-length records containing the object as a series of text strings.

The object is not formatted in any special way within the records. It remains as composed by your

application or as entered from your terminal.

Objects written out in this format have the following attributes:

v Logical record length of 79 bytes

v Fixed length record format.

Encoded format in query management

This external format allows you to access those query management objects that contain more structure

than the simple panel format objects. Use this format only for FORM objects.

Size of the encoded format in query management

The encoded format must have record lengths of up to 150 characters.

Records that make up the base encoded format in query management

The formats of those records that make up the base encoded format are described below. Other encoded

format record types (associated with specific query management objects) are discussed in later sections

that deal with the external formats of the individual objects.

For each record type, there is a description of its purpose, actual contents, format, and a set of notes on

its usage. There are also record descriptions that provide a precise and exhaustive list of the possible

values for each field in the record. Some of these fields (particularly in the header record) might contain

only a single value.

The base set of record types in the encoded format includes:

 Record type Descriptive name

“H” “Header (“H”) record in query management” on page 127

“V” “Value (“V”) records in query management” on page 129

“T” “Table description (“T”) records in query management” on page 130

“R” “Table row (“R”) records in query management” on page 132

126 System i: Query Management Programming

Record type Descriptive name

“E” “End-of-object (“E”) record in query management” on page 134

“*” “Application data (“*”) record in query management” on page 134

Applications should be written to tolerate fields that are not defined here; that is, applications should

ignore fields and records that are not defined or understood. Toleration of such fields allows an

application to run with an object generated by a future implementation of query management. This

design would also allow toleration of an object containing unsupported functions.

Header (“H”) record in query management

The H record identifies the contents of an externalized object (an object is an externalized object when it

is being displayed either online or on hard copy). It contains information describing the characteristics of

the object as well as the file format.

The following figures summarize the contents of the header record:

 +....1....+....2....+....3....+....4....+

 FORMAT: Hdppp rr t oo f u s n a cc ii yy/mm/dd hh:mm

 | | | | | | | | | | | | |

 d d d d d d d d d d d d d

 |______________________________________|

 |

 |

 fixed format

 WHERE: H indicates this is an object Header record

 d is the data field delimiter for this record

 only -- a blank

 ppp is the product identifier:

 QM4

 rr is the product level in which the object

 was produced:

 03, 04, 05, etc.

 t is the type of object in this file:

 F for form, Q for query, P for procedure

 oo is the product object level at the time when

 the given type of object was produced:

 01, 02, 03, etc.

 f is the format of the object in this file:

 E for encoded format

 u indicates the status of the object:

 E for contains Errors

 W for contains Warnings

 V for Valid

 s indicates the subset of the object included:

 W for Whole object

Figure 25. Header record description (Part 1 of 2)

Chapter 8. Exported and imported objects in query management 127

The following figure summarizes the location and contents of each of the fields in the header record. The

field names used here were defined in the previous figure describing the entire header record.

Object-specific values are noted as appropriate.

 Notes to Figure 26:

 n indicates the language of the exported

 object.

 E English

 a is the action against the item:

 R for Replace object

 cc is the length of the control area in the

 beginning of each following record (including

 the 1-byte record type):

 01 for Forms

 ii is the length of the integer length fields

 specified in "V" and "T" type records:

 03 for all objects

 yy/mm/dd date stamp

 hh:mm time stamp

 EXAMPLE: H QM4 03 F 03 E V W E R 01 03 89/09/23 15:21

 (QM4 FORM file at "object level" 3, written in the

 encoded format, with no errors or warnings, in entirety

 in English, usable for complete replacement, with 1

 byte of control area, and 3 bytes for integer lengths)

Figure 25. Header record description (Part 2 of 2)

 Possible Required Default if

 Field Columns Values on Input Blank on Input

 __

 H 01 H yes

 d 02 (blank) no (not used on input)

 ppp 03-05 QM4 yes

 rr 07-08 03 no (not used on input)

 t 10 F (form yes

 Q (query)

 P (procedure)

 oo 12-13 03 no current object level

 f 15 E yes

 u 17 E W V no (not used on input)

 s 19 W no (not used on input)

 n 21 E (English) no (not used on input)

 a 23 R yes

 cc 25-26 01 (form) no (not used on input)

 ii 28-29 03 no (not used on input)

 yy/mm/dd 31-38 (dates) no (not used on input)

 hh:mm 40-44 (times) no (not used on input)

Figure 26. Header record fields

128 System i: Query Management Programming

v The header record must be the first record in the external file.

v If the record is shorter than its fixed format length, those fields (or portions of fields) left unspecified

are assumed to be blank.

v The object level (“oo”) is used to denote a change in the externalized format of an object. When a

particular level of query management changes the external format of an object, the object’s level

number is incremented. In this way, an application can use this number to determine the format of the

object’s records.

v The control area (with length “cc”) is a fixed area in the beginning of each of the encoded format

records (except the header record) that contains control information pertaining to the given record; the

control area contains information such as the record type and a record continuation indicator.

v The subset, format, action, control area length, and integer length fields have been included in the

header record for future extensions to the encoded format.

v In the future, additional fields will be added to the end of the header record.

Value (“V”) records in query management

The V record is used to provide a value for a single nontabular field in an object (like a FORM OPTIONS

field). It includes the unique field number, the field’s value, and its length.

The following figure summarizes the contents of the V record:

 The following figure summarizes the location and contents of each of the fields in the V record. The field

names used here were defined in the previous figure describing the entire V record. Object-specific values

are noted as appropriate.

 FORMAT: Vc..cdf..f l..l v..v

 | | |

 d d d

 |___| |___________|

 | |

 | |

 control area record info

 WHERE: V indicates this is a Value record

 c..c is the remainder of the control area for this

 record

 (reserved for future use)

 d is the data field delimiter for this record

 only -- a blank

 f..f is the field number

 e.g. 1201, 1509

 l..l indicates the length of the data value:

 an * used instead of a numeric value

 indicates that the data value is delimited

 by the end of the record

 v..v is the data value (in printable form)

 EXAMPLES: V 1511 004 NONE

 (Form field 1511 with length of 4 and value ’NONE’)

Figure 27. Value record description

Chapter 8. Exported and imported objects in query management 129

Notes to Figure 28:

v An omitted data value (like end-of-record), or blanks only following the “*” implicitly indicate that a

null (the same as a blank) value is to be applied to this field.

v To explicitly set a field to blank, the field must have a specified positive length and a blank data value.

v Fields are set to their default values when the object is updated if

– The specified length is zero, or

– No length is specified.
v Query management issues a warning when it finds a field length of zero to indicate that the default

value is set for this field.

v If the specified length is shorter than the supplied data value, query management uses the specified

length and issues a warning message.

v If the specified length is longer than the supplied data value, query management sets the data value

without extending beyond the end of the record and issues a warning message.

v IBM is retaining the length field for future V record uses in which an explicit length may be specified

(for example, to indicate significant blanks), and for the possibility of V record expansion.

Table description (“T”) records in query management

The T record is used to describe the content and format of the table of values that follows. The contents

of a T record determine the contents of all R (row) records for this table. A T record indicates which table

is being described (by its unique table number), which columns are included (by their unique field

numbers), in what order they appear, and the lengths of the values in these columns.

The following figure summarizes the contents of the T record:

 Control Area

 Possible Required Default if

 Field Columns Values on Input Blank on Input

 _____ _______ _________ ________ ______________

 V 01 V yes

 c..c 02 (x) n/a

 x 02 (blank) n/a

Figure 28. Value record fields (Part 1 of 2)

 Remainder of Record

 Possible Required Default if

 Field Columns Values on Input Blank on Input

 _____ _______ _________ ________ ______________

 d +01 (blank) no

 f..f +02-05 1001-9999 yes

 l..l +07-09 * yes

 000-999

 v..v +11-end (data) no (blank)

Figure 28. Value record fields (Part 2 of 2)

130 System i: Query Management Programming

The following figure summarizes the location and contents of each of the fields in the T record. The field

names used here were defined in the previous figure describing the entire T record. Object-specific values

are noted as appropriate.

 FORMAT: Tc..cdt..t n..n m..m f..f l..l f..f l..l ...

 | | | | | | |

 d d d d d d d

 |___| |_____| |_______| ...

 | | |

 | | |

 control area repeating field & length pairs

 WHERE: T indicates this is a Table description record

 c..c is the remainder of the control area for this

 record, consisting of:

 x

 where:

 x is blank (reserved for future use)

 d is the data field delimiter for this record

 only -- a blank

 t..t is the table number

 e.g. 1110, 2710

 n..n is the number of rows ("R" records) in this

 table:

 an * used instead of a numeric value

 indicates that the table consists of all

 of the "R" records which follow

 m..m is the number of columns (field and length

 pairs) in this table

 e.g. 003, 006

 f..f is the field number for this column

 e.g. 1113, 2712

 l..l is the length of the data values in this

 column

 e.g. 005, 012

 EXAMPLES: T 1110 5 2 1112 7 1113 18

 (Form table 1110 containing 5 rows and 2 columns, with

 column 1112 of length 7, and column 1113 of length 18)

Figure 29. Table record description

 Control Area

 Possible Required Default if

 Field Columns Values on Input Blank on Input

 _____ _______ _________ ________ ______________

 T 01 T yes

 c..c 02 (x) n/a

 x 02 (blank) n/a

Figure 30. Table record fields (Part 1 of 2)

Chapter 8. Exported and imported objects in query management 131

Notes to Figure 30 on page 131:

v If the number of R records following the T record does not exactly match the numeric row count

specified in the T record, an error condition results.

v The number of f..f / l..l pairs is limited to the number of columns in the given table.

v The number of columns should agree with the following number of column field numbers and lengths.

If not, a warning message is issued and the number of columns used is the number of field

numbers/column data value lengths in the T record.

v The order of f..f/l..l pairs is arbitrary.

v All of the R records immediately following a T record (that is, those associated with a single table)

must contain values of the exact lengths specified for each column in the T record. Records shorter

than the implied length result in blank or blank-padded values.

v Query management sets columns that have a length of zero (or not specified) to their default values

when the object is updated.

v Query management issues a warning message for columns that have a specified length of zero to

indicate that it set the default value for this column.

v A table that has zero rows (or that is not included in the file) has the same effect as applying columns

of length zero to the table; query management sets all of the columns to their default values.

v To set a column field to blank, the column must have a positive length in the T record and a blank

value in the R record.

Table row (“R”) records in query management

The R record is used to provide a set of values for a single row in the current table. It consists of an

ordered list of values as described by the associated T record. An R record must exactly match the

description of the positions and lengths of the data values, as specified in the T record.

The following figure summarizes the contents of the R record:

 Remainder of Record

 Possible Required Default if

 Field Columns Values on Input Blank on Input

 _____ _______ _________ ________ ______________

 d +01 (blank) no

 t..t +02-05 1001-9999 yes

 n..n +07-09 * yes

 000-999

 m..m +11-13 000-999 yes

 f..f +15-18 1001-999 yes

 +24-27

 l..l +20-22 000-999 yes

 +29-31

 etc.

Figure 30. Table record fields (Part 2 of 2)

132 System i: Query Management Programming

The following figure summarizes the location and contents of each of the fields in the R record. The field

names used here were defined in the previous figure describing the entire R record. Object-specific values

are noted as appropriate.

 Notes to Figure 32:

v An R record must immediately follow another R record, or a T record.

v The number of v..v values must exactly match the description in the associated T record.

 FORMAT: Rc..cdv..v v..v v..v ...

 | | |

 d d d

 |___||____________| ...

 | |

 | |

 control area list of values

 WHERE: R indicates this is a table Row record

 c..c is the remainder of the control area for this

 record, consisting of:

 x

 where:

 x is blank (reserved for future use)

 d is the data field delimiter for this record

 only -- a blank

 v..v is the data value for this row and column (in

 printable form)

 EXAMPLES: R 2 SALARY

 (Form row with first column value of ’ 2’ with

 length 7, and second column value of ’SALARY’ where

 it’s assumed a length of at least 6 was given in the

 T record)

Figure 31. Row record description

 Control Area

 Possible Required Default if

 Field Columns Values on Input Blank on Input

 _____ _______ _________ ________ ______________

 R 01 R yes

 c..c 02 (x) n/a

 x 02 (blank) n/a

Figure 32. Row record fields (Part 1 of 2)

 Remainder of Record

 Possible Required Default if

 Field Columns Values on Input Blank on Input

 _____ _______ _________ ________ ______________

 d +01 (blank) no

 v..v +02-xx (data) no (blank)

 +(xx+2)-yy

 +(yy+2)-zz

 etc.

Figure 32. Row record fields (Part 2 of 2)

Chapter 8. Exported and imported objects in query management 133

v A data value length of zero in the associated T record indicates that no value is to be applied to this

row and column of the object; it is set to its default value. However, the presence of the field in the T

record requires that the R record contain an extra delimiter for this field; a zero-length value results in

one delimiter followed by another in the R record.

End-of-object (“E”) record in query management

The E record is used to delimit the end of the object.

The following figure summarizes the contents of the E record:

 The following figure summarizes the location and contents of each of the fields in the E record. The field

names used here were defined in the previous figure describing the entire E record. Object-specific values

are noted as appropriate.

 Notes to Figure 34:

v The E record should be the last record in the external file.

v If the record is shorter than its fixed format length, those fields (or portions of fields) left unspecified

are assumed to be blank.

Application data (“*”) record in query management

The application data record allows you to include your own data associated with the given object in the

external file. You may choose to use these as comment records to further describe the object in the file.

The following figure summarizes the contents of the application data record:

 +....1....+....2....+....3....+....

 FORMAT: Ec..c

 |___|

 |

 |

 control area

 WHERE: E indicates this is an End-of-object record

 c..c is the remainder of the control area for this

 record

 (reserved for future use)

 EXAMPLE: E

Figure 33. End-of-object record description

 Control Area

 Possible Required Default if

 Field Columns Values on Input Blank on Input

 _____ _______ _________ ________ ______________

 E 01 E yes

 c..c 02 (x) n/a

 x 02 (blank) n/a

Figure 34. End-of-object record fields

134 System i: Query Management Programming

The following figure summarizes the location and contents of each of the fields in the * record. The field

names used here were defined in the previous figure describing the entire * record. Object-specific values

are noted as appropriate.

 Notes to Figure 36:

v Application data records may appear anywhere in the external file, except ahead of the header record.

v Other than validating the format of the record, the application data record is ignored and has no effect

on the input process.

v If the record is shorter than its fixed format length, those fields (or portions of fields) left unspecified

are assumed to be blank.

EXPORT and IMPORT file considerations in query management

Following are considerations for exporting and importing files:

v Query management allows files to be exported to and imported from multiple member source files.

v You must create a source file with a record length that allows for 12 positions for the Source sequence

number and Date fields required in each record.

v Query management truncates data and generates a warning message when exporting to an existing

source file if the file does not have a sufficient data length. The following situations can result in

truncation:

– Exporting an SQL query or procedure object to a file that has a data length less than 79 bytes. Query

management creates the truncation warning message whenever any part of the SQL statement or

query command has been truncated.

– Exporting a query management form object to a file that has an insufficient data length. The

minimum allowed data length is 150 bytes (based on the maximum length of an exported

encoded-format form record, a columns table R record). When query management creates a file as a

result of the export, it is created with a data length of 150 bytes. Therefore, a data length of 150

bytes is recommended. Query management issues the truncation warning message when any

truncation of data occurs. Since parts of the form are optional, the actual data length required might

be less than 150 bytes.
v The confirmation message (when CONFIRM=YES is specified on the EXPORT command) is sent when

a member of a source physical file is being replaced. It is not sent if a new member of an already

existing source physical file is being created.

v Query management ignores all columns in the file past column 79 while importing an SQL query or

procedure object. A message is generated if columns are ignored.

 FORMAT: *v..v

 WHERE: * indicates this is an application data record

 v..v is the data value(s) produced by an appli-

 cation program (preferably in printable form)

 EXAMPLE: * This is the Form that groups by DEPT.

 (comment record in a Form file)

Figure 35. Application data record description

 Control Area

 Possible Required Default if

 Field Columns Values on Input Blank on Input

 _____ _______ _________ ________ ______________

 * 01 * yes

 v..v 02-end data no (not used on input)

Figure 36. Application data record fields

Chapter 8. Exported and imported objects in query management 135

v Query management ignores all columns in the file past column 150 during the import of a form object.

A message is generated if columns are ignored.

v i5/OS does not support files with varying record lengths. Therefore, prior to or during the transfer to

the system for import, the file that contains the externalized form object in encoded format must be

converted to fixed record format. On export of a form object, query management creates a file with

fixed-length record format. The record is padded with blanks from the end of meaningful data to the

end of the record. Therefore, before importing to a product that does not support fixed format

externalized forms, the file must be converted to varying-length record format.

v Query management pads the internal representation of each record with blanks up to and including

position 79 when importing an SQL query or procedure object, if the input file has a data length less

than 79 bytes. If the line contains an open string enclosed in quotation marks, this padding is then

included within this string and can cause unexpected results.

v The source physical file that contains the externalized SQL query or procedure can be any size that is

allowed by the i5/OS operating system for a source physical file.

Note: Although the source physical file can be any size allowed by the system, the results may be

truncated when imported if they exceed the maximum allowed limits. For more information on

import limits, see SQL reference.

v During IMPORT FORM, if the COLUMNS.DATATYPE field is DATE, TIME, or TIMESTAMP and the

COLUMNS.USAGE is AVG or SUM, you get an incompatible usage and data type message.

COLUMNS.USAGE is not used and the IMPORT ends with a warning.

v If the same applies during RUN QUERY or PRINT REPORT, you receive a message and RUN QUERY

or PRINT REPORT fails. (This situation occurs if no COLUMNS.DATATYPE was specified in the

externalized form when it was imported.)

Ambiguous date and time literals in query management

Literals for date and time that appear in an SQL statement can be of any of the SQL formats or must be a

valid i5/OS date or time format. Table 15 shows the SQL time formats.

 Table 15. Formats for representations of time data types

Format name Abbreviation Time format Example

International Standards Organization ISO HH.MM.SS 13.30.05

IBM USA standard USA HH:MM am or pm 1:30 pm

IBM European standard EUR HH.MM.SS 13.30.05

Japanese industrial standard Christian era JIS HH:MM:SS 13:30:05

Table 16 shows the SQL date formats that can be used for an SQL statement.

 Table 16. Formats for representations of date data types

Format name Abbreviation Date format Example

International Standards Organization ISO YYYY-MM-DD 1987-10-12

IBM USA standard USA MM/DD/YYYY 10/12/1987

IBM European standard EUR DD.MM.YYYY 12.10.1987

Japanese industrial standard Christian era JIS YYYY-MM-DD 1987-10-12

Country- or region-specific date and time formats can be interpreted incorrectly. This situation occurs

when the query contains global variables and the query has a different date format than the job. Because

of this, query management recognizes when these ambiguous date and time literals are used and then

fails with a message that describes the error. You are told in the message how to fix the problem.

Query management does not recognize ambiguous date and time literals in the query source when it is

imported. You are responsible to appropriately document the query source to avoid ambiguity.

136 System i: Query Management Programming

Note: The job date and time format or separators should not be changed after a query instance has been

started. The IMPORT and RUN QUERY commands will use the date and time information that

was in effect at the time of the START.

Variable-length fields in query management

A variable-length field consists of 2 bytes followed by the data. Maximum length is 32 740.

Variable-length fields can be character (single-byte character set (SBCS) or bracketed double-byte

character set (DBCS), graphic DBCS, or hexadecimal. See Appendix A, “DBCS data in query

management” for considerations and maximum lengths for DBCS data.

When comparing fields for break processing, trailing blanks are not significant. Two strings of different

length are equal if they differ only by the number of trailing blanks.

You can define a variable-length field with a maximum length of 32 740 (32 739 if null capable). You can

also specify an allocated length for the field. To help improve performance, define the optimum length as

the allocated length. Most records are this length or less and will be stored in fixed data storage. If a

record is longer than the allocated length, it is stored in variable-length data storage. All the records are

stored correctly and the extra read to auxiliary storage is only necessary for occasional long records.

Display format in query management

For more information on the externalized procedure and SQL query objects that use the display format,

see Chapter 5, “Procedures in query management” and Chapter 2, “Query capability in query

management.”

Encoded format in query management

Query management uses the encoded format only for the externalized form object. This section covers

each record type in the encoded format as used by query management. Query management tolerates

fields that are not defined in this manual.

Note: Unrecognized fields are lost during import and are not displayed on subsequent exports.

Importing a form object in query management

The following rules apply when importing a form object to query management in encoded format:

v The H record must be the first record in the file.

v Record types other than H, V, T, R, and * encountered within the file before the E record are ignored.

v A warning message is issued if unknown record types are encountered.

v Records after the E record are ignored.

v The T record of the columns table must immediately follow the header or comment V record, and must

include a numeric count of the number of rows in the table (an * row count is not allowed).

v Query management ignores the control area length (cc) field in the H record.

v Query management assumes that the control area length value on all form object records is 01.

v Query management uses the delimiter values specified on each of the form object records. Therefore, a

nonblank delimiter is allowed.

v The delimiter value on the H record is ignored, since the H record is column-specific.

v The following fields must be in uppercase when a form object is imported:

– Record identifiers for all records

– The following in the header record:

- Product identifier (QRW, QMF*, QM4, and so on)

- Type of object (F)

- Format of object (E)

- Action (R)

Chapter 8. Exported and imported objects in query management 137

– Data type values (NUMERIC, CHAR) in the R records for the columns table

– All the form object keywords and substitution variables
v Duplicate occurrences of data values or tables override previous settings, with one exception. Query

management does not override previous settings if the new object violates the rules established for an

object. For example, the number of columns provided for a form cannot be varied after the first

columns table has been processed.

v Combining the original format and the new format for representing the break information is not

allowed.

v Object values not included in the input file are set to their default values.

Columns table details in query management

The form must contain all of the columns for the underlying data. Form and data mismatch are not

detected until the form is applied at RUN or PRINT time.

When the entire columns table is processed, unspecified fields result in the default values at run time.

The default values are applied at run time and are those that were defined at file definition from the

table you are querying. Export of a form that was imported with missing columns table fields results in

an externalized form that has the same columns table fields missing. Query management allows and uses

i5/OS edit codes when the defaults are applied at run time. A warning message is generated at import

and export when these fields are not specified.

Query management allows multiple occurrences of the columns table but does not allow subsequent

occurrences of the table to alter the number of columns.

Query management supports the importation of forms that specify the data type GRAPHIC, although

SQL conventions and DB2 for i5/OS do not support these data types. Query management allows

importing a form object that contains these data types, but an attempt to apply the form results in data

and form mismatch errors at run time. A warning message is generated if a form object that specifies an

unsupported data type is imported. Values in the columns table that are not recognized or are not valid

are ignored, and default values are assumed.

Exporting a form object in query management

Query management uses blank delimiters, regardless of the delimiter used on the imported object. The

information that was defaulted at import time is exported for all report sections other than columns.

Query management exports form objects using the new format to describe the break information.

Record format rules in query management

For Input (Import):

 1. The file may consist of variable or fixed-length records.

 2. The minimum allowed logical record length is 23, based upon the required header record format and

contents.

 3. The record type character (H, V, T, R, E, and *) must appear in the first position of every record.

 4. The first “cc” bytes of all records are reserved for control information and therefore require a fixed

format (“cc” varies with the object).

 5. Every data object (including field numbers, lengths, and values) must be preceded and followed by

precisely one delimiter character.

There are two exceptions to this rule: 1) End-of-record counts as a delimiter, and 2) Zero-length

(null) values require a pair of delimiters surrounding the “nonexistent” value.

 6. All the fields that are required on input are validated.

 7. Duplicate occurrences of any single data value or table override any previous settings, with one

exception. Query management does not override previous settings if the new object violates the rules

established for a particular object, such as when the number of columns provided for a form might

not be varied after the first column’s table has been processed.

138 System i: Query Management Programming

8. Portions of an object not included in the input file are set to their default values.

 9. Numeric lengths and table and field numbers may be specified with leading zeros and/or leading

blanks, but may not be padded with trailing blanks (other than a single blank delimiter); they must

be right-justified in their positions in the record.

10. Nonnumeric lengths (an * specification) must be padded with trailing blanks to the current length of

integer length values (specified in the header record).

11. Object field values shorter than the data entry field on the object panel are padded with trailing

blanks.

12. Object field values longer than the data entry field on the object panel are truncated.

13. If the format of the form file is in error, the IMPORT is aborted. In most cases, a single message

describes the error and its location in the file.

14. Any records in a file following the E record are ignored.

15. If the input file does not contain an E record, it is assumed that end-of-file implies the end of the

object.

For Output (Export):

1. All table and field numbers appear as 4-digit numbers.

2. All lengths are written with leading zeros to a length of 3 digits (as specified in the header record).

3. The blank character is the data object delimiter used in all records.

4. Delimiter characters do not appear as the final character on each record.

5. All reserved fields appear with blanks.

6. If exporting to a pre-allocated data set in QMF™ under MVS™, the data set record format must be

variable (V) and the logical record length of the data set must satisfy the exported object’s actual

maximum output logical record length. If an output data set record length is longer than this

pre-allocated maximum, an error results.

7. All table columns appear in numeric field number order in the externalized form, except the column

heading field, which is last.

8. An E record appears as the last record in the target file.

Specific query object formats in query management

The following sections list the query management objects and examples of the externalized formats.

“Externalized form format in query management”

“Externalized procedure and query formats in query management” on page 151

Externalized form format in query management

The form is externalized by query management in the encoded format. The specification of this format

was described earlier in “General object formats in query management” on page 125.

The form objects make use of the H, V, T, R, and E records discussed in “Encoded format in query

management” on page 126.

Deviations from the base encoded format and other special considerations specific to the form are

described below.

v The input form must contain all of the columns for the underlying data.

v The columns table must be the first portion of the form specified following the header or V record (and

may not be altered in size by later duplicate occurrences of this table).

v The columns table must include a numeric count of the number of rows in the table (rather than the

“*” row count specification).

Chapter 8. Exported and imported objects in query management 139

v If the entire columns table was read in, those fields not specified are set to their default values.

v The COLUMNS.DATA_TYPE column is always written out.

Figure 37 on page 141 shows how the fields that are described for a form object are represented in an

externalized form that is used to create a query management form (QMFORM) object. You must specify

the possible field values, except for text fields, in uppercase characters. The defaults shown in Figure 37

are applied at import time, and appear in the exported form source. For any given text table:

v The 0 in the count range shown indicates the table does not need to be present in the form source

when importing. If not present when importing, it will not be present in the exported form source.

v The high number in the count range shown is the highest number that can be used as a Line value. The

lowest number is 1.

v Text line numbers do not have to be encountered in sequence to import, but are shown in sequence in

the exported form source.

v Numbered lines with blank text will be added to fill any gaps before the highest numbered line

imported with nonblank text.

Specific query object formats

140 System i: Query Management Programming

Record Table Field Count Import

 type number number Description range default

------ ------ ------ ------------------------------- -------- -------

 V 1001 Object Comment

 * COLUMN *

 T 1110 Column Fields 1-255

 1112 --Column data type -

 1113 --Column heading -

 1114 --Column usage -

 1115 --Column indent 2

 1116 --Column width -

 1117 --Column edit -

 1118 --Column sequence n

 (n is 5 for the 5th R record, for example)

 * PAGE *

 V 1201 Blank lines before heading 0

 V 1202 Blank lines after heading 2

 T 1210 Page heading text table 0-999

 1212 --Page heading line number -

 1213 --Page heading align CENTER

 1214 --Page heading text -

 V 1301 Blank line before footing

 V 1302 Blank line after footing

 T 1310 Page footing text table 0-999

 1312 --Page footing line number -

 1313 --Page footing align CENTER

 1314 --Page footing text -

 * FINAL *

 V 1401 New page for final text NO

 V 1402 Put final summary at line 1

 V 1403 Skip lines before final text 1

 T 1410 Final text table 0-999

 1412 --Final text line number -

 1413 --Final text align RIGHT

 1414 --Final text -

Figure 37. Encoded (Externalized) form field summary (Part 1 of 2)

Specific query object formats

Chapter 8. Exported and imported objects in query management 141

Figure 38 on page 143 is an example of an exported query management form. A form can be edited and

subsequently imported to obtain the desired report formatting. Refer to the list of record types and field

numbers to match the field numbers to specific report attributes. The * records, which are valid comment

records, are used to explain the meaning of certain parts of the form. The examples given are of certain T

records with R records (tables) and V records. The same interpretation applies to records of the same

types in the remainder of the form.

 * OPTIONS *

 V 1501 Detail line spacing 1

 V 1502 Outlining for break columns YES

 V 1503 Default break text YES

 V 1505 Column wrapped lines kept on page YES

 V 1507 Column heading separators YES

 V 1508 Break summary separators YES

 V 1510 Final summary separators YES

 * BREAK *

 V 3080 Break level indicator -

 V 3101 New page for break heading NO

 V 3102 Repeat column headings NO

 V 3103 Blank lines before heading 0

 V 3104 Blank lines after heading 0

 T 3110 Break heading table 0-5

 V 3112 --Break heading line number -

 V 3113 --Break heading align LEFT

 V 3114 --Break heading text -

 V 3201 New page for break footing NO

 V 3202 Put break summary at line 1

 V 3203 Blank lines before footing 0

 V 3204 Blank lines after footing 1

 T 3210 Break footing table 0-5

 V 3212 --Break footing line number -

 V 3213 --Break footing align RIGHT

 V 3214 --Break footing text -

Figure 37. Encoded (Externalized) form field summary (Part 2 of 2)

Specific query object formats

142 System i: Query Management Programming

H QM4 01 F 01 E V W E R 01 03 90/3/19 14:27

* The ’H’ record must be the first record in the file as above.

* The columns table must immediately follow the ’H’ record unless there

* are comment records.

* The T record describes the information that follows in the R records

* The field number ’1110’ identifies the table as the columns table.

* | The ’005’ means that there are 5 columns (R records)

* | | following the ’T’ record.

* | | The ’006’ means that there are 6 field number, field

* | | | pairs in the T record.

* | | | Starting with ’1112’ are the field number, field

* | | | pairs which describe the values in the R record.

* | | | For example ’1112’ corresponds to ’Data type’

* | | | | (see the table of field numbers) and has a

* | | | | length of 8.

* | | | | If I wanted to change the indent for a column

* | | | | I would look in the table of field numbers

* | | | | and find that the indent identifier is ’1115’.

* | | | | Counting the field numbers, starting

* | | | | | with ’1112’, I find that ’1115’

* | | | | | is 3rd in the series of field

* | | | | | length pairs and has a field

* |___ |__ |__ |______ |______ width of 6.

* | | | | | | | | | |

T 1110 005 006 1112 008 1114 007 1115 006 1116 005 1117 005 1113 040

* The indent value is the third field over in the

* | R records and contains a 3 for every column.

* | The values are left-justified and separated

* |_ by blank delimiters.

* | |

R CHAR 3 6 C NAME

R CHAR BREAK1 3 6 C DEPARTMENT

R NUMERIC SUM 3 6 L YEARS

R NUMERIC SUM 3 6 L SALARY

R NUMERIC SUM 3 6 L COMMISSION

* A ’V’ record describes a single attribute in the form.

* The ’1201’ field number is the blank lines before page

* | heading attribute.

* | It has a value length of 1.

* | | It has a value of 1.

* |__ |_ |_

* | | | || |

V 1201 001 1

V 1202 001 2

Figure 38. Sample externalized form (Part 1 of 4)

Specific query object formats

Chapter 8. Exported and imported objects in query management 143

* The following table describes the page heading text.

* The fields used are the line number, alignment, and text, respectively.

* This is the page heading text

T 1210 005 003 1212 004 1213 006 1214 055

R 1 CENTER **

R 2 CENTER **** &ID &DATE ****

R 3 CENTER **** COMPANY REPORT ****

R 4 CENTER **** ****

R 5 CENTER **

* The ’*’ in place of a numeric length indicates to use the

* | remainder of the record for the length of the data value.

* |_

* | |

V 1301 * 1

V 1302 * 2

T 1310 003 003 1312 004 1313 006 1314 055

* This is the page footing text

R 1 CENTER XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

R 2 CENTER XXXXXXXX Internal Use Only XXXXXXXX

R 3 CENTER XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

V 1401 003 YES

V 1402 001 2

T 1410 005 003 1412 004 1413 006 1414 055

R 1 LEFT ***

R 2 LEFT ******* &PAGE &TIME &DATE ********

R 3 LEFT ******* END OF REPORT ********

R 4 LEFT ******* ********

R 5 LEFT ***

V 1501 * 1

V 1502 003 YES

V 1503 003 YES

V 1505 003 YES

V 1507 003 YES

V 1508 003 YES

V 1510 003 YES

* The following section shows the break information using the

* new format.

* The value in the ’3080’ V record indicates the break

* | level, which applies to all of the break information

* _| until the next ’3080’ V record is encountered.

* | | The break level in this example is 1.

V 3080 001 1

V 3101 002 NO

V 3102 002 NO

V 3103 001 0

V 3104 001 0

T 3110 001 003 3112 004 3113 006 3114 055

R 1 CENTER BREAK 1 HEADING

V 3201 002 NO

V 3202 002 NO

V 3203 001 0

V 3204 001 0

T 3210 003 003 3212 004 3213 006 3214 055

Figure 38. Sample externalized form (Part 2 of 4)

Specific query object formats

144 System i: Query Management Programming

R 1 CENTER ***

R 2 CENTER **** BREAK 1 FOOTING Employee ID=&ID ****

R 3 CENTER ***

* Break level 2 information

V 3080 001 2

V 3101 003 YES

V 3102 003 YES

V 3103 001 0

V 3104 001 0

T 3110 002 003 3112 004 3113 006 3114 055

R 1 CENTER BREAK 2 HEADING

R 2 CENTER ---------------

V 3201 002 NO

V 3202 002 NO

V 3203 001 0

V 3204 001 0

T 3210 003 003 3212 004 3213 006 3214 055

R 1 CENTER ***

R 2 CENTER **** BREAK 2 FOOTING Employee ID=&1 ****

R 3 CENTER ***

* Break level 3 information

V 3080 001 3

V 3101 003 YES

V 3102 003 YES

V 3103 001 0

V 3104 001 0

T 3110 002 003 3112 004 3113 006 3114 055

R 1 CENTER BREAK 3 HEADING

R 2 CENTER ---------------

V 3201 002 NO

V 3202 002 NO

V 3203 001 0

V 3204 001 0

T 3210 003 003 3212 004 3213 006 3214 055

R 1 CENTER ****************************

R 2 CENTER **** BREAK 3 FOOTING ****

R 3 CENTER ****************************

* Break level 4 information

V 3080 001 4

V 3101 003 YES

V 3102 003 YES

V 3103 001 0

V 3104 001 0

V 3201 002 NO

V 3202 002 NO

V 3203 001 0

V 3204 001 0

T 3210 003 003 3212 004 3213 006 3214 055

Figure 38. Sample externalized form (Part 3 of 4)

Specific query object formats

Chapter 8. Exported and imported objects in query management 145

You can edit an externalized form object to change your report format. The externalized form layout is in

the encoded format, which uses record types and field number identifiers to represent the form. Each

field number identifier in the externalized form object represents a different attribute in the report. After

making changes to the externalized form, you must import it for the changes to take effect.

Figure 39 on page 147 shows the descriptive names of the encoded form fields.

R 1 CENTER ****************************

R 2 CENTER **** BREAK 4 FOOTING ****

R 3 CENTER ****************************

* Break level 5 information

V 3080 001 5

V 3101 003 YES

V 3102 003 YES

V 3103 001 0

V 3104 001 0

V 3201 002 NO

V 3202 002 NO

V 3203 001 0

V 3204 001 0

* Break level 6 information

V 3080 001 6

V 3101 003 YES

V 3102 003 YES

V 3103 001 0

V 3104 001 0

V 3201 002 NO

V 3202 002 NO

V 3203 001 0

V 3204 001 0

T 3210 003 003 3212 004 3213 006 3214 055

R 1 CENTER +++++++++++++++++++++++

R 2 CENTER +++ BREAK 6 FOOTING +++

R 3 CENTER +++++++++++++++++++++++

* The ’E’ record is the last record in the file. Records after

* the ’E’ record will be ignored.

E

Figure 38. Sample externalized form (Part 4 of 4)

Specific query object formats

146 System i: Query Management Programming

A new format exists for the break information in the encoded object. To support the forms that use the

original format, query management supports both the original format and the new format to describe the

Record Table Field

 Type Number Number Description

------ ------- ------ -----------

 V 1001 Object comment

 *** Columns section of the report ***

 T 1110 Column Fields

 1112 --Column data type

 1113 --Column heading

 1114 --Column usage

 1115 --Column indent

 1116 --Column width

 1117 --Column edit

 1118 --Column sequence

 *** Page section of the report ***

 V 1201 Blank lines before heading

 V 1202 Blank lines after heading

 T 1210 Page heading text table

 1212 --Page heading line number

 1213 --Page heading align

 1214 --Page heading text

 V 1301 Blank line before footing

 V 1302 Blank line after footing

 T 1310 Page footing text table

 1312 --Page footing line number

 1313 --Page footing align

 1314 --Page footing text

Figure 39. Descriptive names of encoded format form fields (Part 1 of 2)

 *** Final section of the report ***

 V 1401 New page for final text

 V 1402 Put final summary at line

 V 1403 Skip lines before final text

 T 1410 Final text table

 1412 --Final text line number

 1413 --Final text align

 1414 --Final text

 **

 ** Options fields section of the report **

 **

 V 1501 Detail line spacing

 V 1502 Outlining for break columns

 V 1503 Default break text

 V 1505 Column wrapped lines kept on a page

 V 1507 Column heading separators

 V 1508 Break summary separators

 V 1510 Final summary separators

Figure 39. Descriptive names of encoded format form fields (Part 2 of 2)

Specific query object formats

Chapter 8. Exported and imported objects in query management 147

break information. An attempt to use a combination of the two formats is not allowed and results in

ending the import request. All forms are exported using the new format.

Figure 40 is a description of the new format that provides for a break level indicator (V record with field

number 3080) to indicate the break level. All of the break information that follows each break level

indicator is applied to the break level value in the 3080 V record.

The new format uses one set of field numbers to describe the break heading and footing information,

which allows for more efficient future expansion of the number of break levels supported.

 Figure 41 on page 149 is a description of the original format for representing the break information in the

encoded object. This format uses a unique field number for each of the break attributes. This format

cannot be used in combination with the new break format.

 Record Table Field Description

 Type Number Number

 * Break fields section of the report *

 V 3080 Break level indicator

 V 3101 New page for break heading

 V 3102 Repeat column headings

 V 3103 Blank lines before heading

 V 3104 Blank lines after heading

 T 3110 Break heading table

 V 3112 --Break heading line number

 V 3113 --Break heading align

 V 3114 --Break heading text

 V 3201 New page for break footing

 V 3202 Put break at summary line

 V 3203 Blank lines before footing

 V 3204 Blank lines after footing

 T 3210 Break footing table

 V 3212 --Break footing line number

 V 3213 --Break footing align

 V 3214 --Break footing text

Figure 40. Preferred format for encoded break information

Specific query object formats

148 System i: Query Management Programming

Record Table Field Description

 Type Number Number

 * Break fields section of the report *

 V 1601 Break 1: New page for heading

 V 1602 Break 1: Repeat column headings

 V 1603 Break 1: Blank lines before heading

 V 1604 Break 1: Blank lines after heading

 T 1610 Break 1: Heading table

 V 1612 --Break 1: Heading line number

 V 1613 --Break 1: Heading align

 V 1614 --Break 1: Heading text

 V 1701 Break 1: New page for break footing

 V 1702 Break 1: Put break at summary line

 V 1703 Break 1: Blank lines before footing

 V 1704 Break 1: Blank lines after footing

 T 1710 Break 1: Footing table

 V 1712 --Break 1: Footing line number

 V 1713 --Break 1: Footing align

 V 1714 --Break 1: Footing text

 V 1801 Break 2: New page for heading

 V 1802 Break 2: Repeat column headings

 V 1803 Break 2: Blank lines before heading

 V 1804 Break 2: Blank lines after heading

 T 1810 Break 2: Heading table

 V 1812 --Break 2: Heading line number

 V 1813 --Break 2: Heading align

 V 1814 --Break 2: Heading text

 V 1901 Break 2: New page for break footing

 V 1902 Break 2: Put break at summary line

 V 1903 Break 2: Blank lines before footing

 V 1904 Break 2: Blank lines after footing

 T 1910 Break 2: Footing table

 V 1912 --Break 2: Footing line number

 V 1913 --Break 2: Footing align

 V 1914 --Break 2: Footing text

 V 2001 Break 3: New page for heading

 V 2002 Break 3: Repeat column headings

 V 2003 Break 3: Blank lines before heading

 V 2004 Break 3: Blank lines after heading

 T 2010 Break 3: Heading table

 V 2012 --Break 3: Heading line number

 V 2013 --Break 3: Heading align

 V 2014 --Break 3: Heading text

Figure 41. Original format for encoded break information (Part 1 of 3)

Specific query object formats

Chapter 8. Exported and imported objects in query management 149

V 2101 Break 3: New page for break footing

 V 2102 Break 3: Put break at summary line

 V 2103 Break 3: Blank lines before footing

 V 2104 Break 3: Blank lines after footing

 T 2110 Break 3: Footing table

 V 2112 --Break 3: Footing line number

 V 2113 --Break 3: Footing align

 V 2114 --Break 3: Footing text

 V 2201 Break 4: New page for heading

 V 2202 Break 4: Repeat column headings

 V 2203 Break 4: Blank lines before heading

 V 2204 Break 4: Blank lines after heading

 T 2210 Break 4: Heading table

 V 2212 --Break 4: Heading line number

 V 2213 --Break 4: Heading align

 V 2214 --Break 4: Heading text

 V 2301 Break 4: New page for break footing

 V 2302 Break 4: Put break at summary line

 V 2303 Break 4: Blank lines before footing

 V 2304 Break 4: Blank lines after footing

 T 2310 Break 4: Footing table

 V 2312 --Break 4: Footing line number

 V 2313 --Break 4: Footing align

 V 2314 --Break 4: Footing text

 V 2401 Break 5: New page for heading

 V 2402 Break 5: Repeat column headings

 V 2403 Break 5: Blank lines before heading

 V 2404 Break 5: Blank lines after heading

 T 2410 Break 5: Heading table

 V 2412 --Break 5: Heading line number

 V 2413 --Break 5: Heading align

 V 2414 --Break 5: Heading text

 V 2501 Break 5: New page for break footing

 V 2502 Break 5: Put break at summary line

 V 2503 Break 5: Blank lines before footing

 V 2504 Break 5: Blank lines after footing

 T 2510 Break 5: Footing table

 V 2512 --Break 5: Footing line number

 V 2513 --Break 5: Footing align

 V 2514 --Break 5: Footing text

Figure 41. Original format for encoded break information (Part 2 of 3)

Specific query object formats

150 System i: Query Management Programming

Externalized procedure and query formats in query management

The procedure and SQL query objects are externalized (exported and saved) in the panel format

described in “Panel format in query management” on page 126.

IMPORT QUERY considerations for sort sequence in query

management

Query management supports sort sequence options and language identifiers when IMPORT QUERY is

used to create an SQL query object.

The sort sequence and language identifiers can be specified on the IMPORT QUERY CPI command and

in the query source. The value specified on the IMPORT QUERY CPI command takes precedence over

values in the query source.

SRTSEQ and LANGID are two separate options on the IMPORT command. They are separate V records

in the query source. Query management allows you to specify one of the attributes on the command and

one of the attributes in the source.

Error handling and warning conditions in query management

To support imports of queries that were externalized from other systems, query management is more

tolerant of discrepancies in the source. When LANGID or SRTSEQ are in the source member, the

following V record format errors can occur:

v The value length specified was zero or was not specified.

v The specified length is shorter than the data value.

v The specified length is longer than the data value.

v Unrecognized special values for LANGID and SRTSEQ are specified in the source.

If the query was exported from a system at a higher level that supports more special values, the

following V record format error can occur:

v The language identifier is not supported.

If the query was exported from a system that supports more language identifiers, the following V record

format error can occur:

v The format for a translation table name or a language identifier name is not valid.

 V 2601 Break 6: New page for heading

 V 2602 Break 6: Repeat column headings

 V 2603 Break 6: Blank lines before heading

 V 2604 Break 6: Blank lines after heading

 T 2610 Break 6: Heading table

 V 2612 --Break 6: Heading line number

 V 2613 --Break 6: Heading align

 V 2614 --Break 6: Heading text

 V 2701 Break 6: New page for break footing

 V 2702 Break 6: Put break at summary line

 V 2703 Break 6: Blank lines before footing

 V 2704 Break 6: Blank lines after footing

 T 2710 Break 6: Footing table

 V 2712 --Break 6: Footing line number

 V 2713 --Break 6: Footing align

 V 2714 --Break 6: Footing text

Figure 41. Original format for encoded break information (Part 3 of 3)

Specific query object formats

Chapter 8. Exported and imported objects in query management 151

Failing conditions in query management

Any errors which would be flagged as V record format errors are failing conditions if they are present

on the command. For example, the statement IMPORT QUERY X FROM Y (SRTSEQ=*INVALID would

fail for the following reasons:

v The translation table was not found.

v The library was not found when the translation table was qualified.

v No authority is granted to use the translation table specified.

v No authority is granted to the library containing the translation table.

EXPORT QUERY considerations for sort sequence in query

management

The EXPORT QUERY CPI command has no changes. However, EXPORT QUERY processing has changed.

Two new V records are exported to the query source file member. V record type 5001 is the sort sequence

option. V record type 5002 is the language identifier.

V 5001 010 *JOB

V 5002 003 ENG

The new V records are placed in numeric order immediately after the V 1001 record for the

comment/description. The exported information is the information used to create the query. No checking

is done to ensure that a user-specified sort sequence table still exists.

If an export is done to convert a Query for i5/OS *QRYDFN object into an SQL statement, query

management exports the sort sequence and language identifier V records to the source file member. The

SRTSEQ and LANGID keywords defined in the *QRYDFN object are exported in the source file for the

following options:

 1=Hexadecimal

 4=Translation table

 5=System sort sequence

If the *QRYDFN object was defined to use one of the following options:

 2=Query for i5/OS language

 3=Define the sequence

then:

v A sort sequence of *HEX is always exported.

v No LANGID V record is exported.

Externalized query description in query management

Query management supports specifying a sort sequence and a language identifier in the query. Figure 42

on page 153 shows the list of V records that can be placed in the query following the H record.

Specific query object formats

152 System i: Query Management Programming

For query management to correctly interpret these records as V records, an H record must be the first

record of the source member. The V records must immediately follow the H record. Intervening blank

records or records other than V are not supported. The V records may be in any order. The last record of

each type is used, unless that record is in error. If the last record is in error, the previous valid V record

of that type is used.

If a valid sort sequence option V record is not found, the default is used. If a valid language identifier V

record is not found, the default is used. A V record warning is sent to the job log for each V record that is

not valid, and the import completes with a warning.

If the SRTSEQ or LANGID parameter is specified on the IMPORT QUERY command, the command value

takes precedence over the source value. The following statements are true if SRTSEQ or LANGID is

specified as an option on the IMPORT QUERY CPI command:

v The V record for the corresponding option in the source member is ignored.

v The V record for the corresponding option in the source member is not verified.

If the SRTSEQ or LANGID parameter is not specified on the command or in the source, the SRTSEQ and

LANGID parameters are the default, *JOBRUN.

Record Table Field Count Import

 type number number Description range default

------ ------ ------ ------------------------------- -------- -------

 V 1001 Object Comment

 V 5001 Sort Sequence Option *JOBRUN

 *JOBRUN

 *JOB

 *HEX

 *LANGIDSHR

 *LANGIDUNQ

 *LIBL/tablename

 *CURLIB/tablename

 libname/tablename

 V 5002 Language Identifier *JOBRUN

 *JOBRUN

 *JOB

 Language Identifier

Figure 42. Externalized query field summary

Specific query object formats

Chapter 8. Exported and imported objects in query management 153

Specific query object formats

154 System i: Query Management Programming

Chapter 9. Distributed Relational Database Architecture in

query management

The Distributed Relational Database Architecture (DRDA) function of query management allows an

application to access multiple remote databases and to perform commits and rollbacks to them in a

synchronized manner.

Query management supports two types of connection management:

v Remote Unit of Work (RUW)

v Distributed Unit of Work (DUW)

To select multiple database connections, use DUW connection management. To select a connection to a

single database, use RUW connection management. The query management DSQRDBCNNMTH keyword

on the START command can be used to select the connection management method to use. In addition,

DSQRDBCNNMTH can be set in the query command procedure specified by the DSQSCMD keyword on

the START command. For more information about the DSQRDBCNNMTH keyword, see “START in

query management” on page 51. The connection management method can also be specified on the CL

commands STRQMQRY and STRQMPRC using the RDBCNNMTH parameter.

You can specify a remote or local database name either by using the CONNECT and SET CONNECTION

commands or the DSQSDBNM keyword on the START command. For more information on the

DSQSDBNM keyword, see “START in query management” on page 51. For more information on the

CONNECT and SET CONNECTION commands, see “CONNECT in query management” on page 24 and

“SET CONNECTION in query management” on page 48.

Using either the CONNECT and SET CONNECTION commands or the DSQSDBNM keyword on the

START command will result in the application being connected to the specified database. Connection

information will be associated with the query instance. If a remote database is not specified using the

START or CONNECT commands, the connection information at the time of the START command shows

the current server.

Note: All RUN QUERY, ERASE TABLE, and SAVE DATA AS commands will be directed to this

connection. A RUN QUERY, ERASE TABLE, or SAVE DATA AS command will fail if the current

connection is not the same as the connection associated with the query instance

Remote unit of work in query management DRDA

With RUW, you will see no difference in the way query management currently connects to its remote

databases. Your connection management will work as it does today. Under RUW, only one connection to

a relational database is allowed. Commits and rollbacks apply to the one allowed connection.

Distributed unit of work in query management DRDA

This is the default connection management method for query management. The DUW connection

management method is much more powerful than RUW connection management. Under DUW, multiple

relational database connections can be maintained. Commits and rollbacks can be performed to multiple

systems in a synchronized manner.

© Copyright IBM Corp. 1998, 2008 155

Connection management statements in query management DRDA

Query management supports the following connection statements:

v CONNECT

v COMMIT

v DISCONNECT

v RELEASE

v SET CONNECTION

Only the COMMIT command is allowed in Query Manager queries. These commands are discussed in

detail in Chapter 4, “Commands in query management,” on page 21.

Connection management in query management DRDA

The CONNECT and RELEASE statements control whether a connection is in a held or released state.

Released state refers to a condition when a disconnect operation is to occur for the connection at the next

successful commit operation. A released state can be thought of as a pending disconnection. A rollback

has no effect on connections. A held state means that a connection is not to be disconnected at the next

commit operation. A connection is placed in the held state by the CONNECT statement. A connection is

moved to the released state from the held state by the RELEASE statement. A connection in the released

state cannot be returned to or placed in the held state. This means that a connection remains in a released

state across unit-of-work boundaries when a rollback is issued or a commit results in a rollback.

Regardless of whether a connection is in the held or released state, a connection can also be in the current

or in the dormant state. Current state refers to a condition when the connection is used for SQL statements

that are executed while in this state. Dormant state refers to a condition when the connection is

suspended. While the connection is in the dormant state, SQL statements use the connection only for

commits and rollbacks. The SET CONNECTION and CONNECT statements change the connection for

the named relational database to the current state while existing connections are placed in or remain in

the dormant state. Only one connection can be in the current state at any given time. When a dormant

connection becomes current in the same unit of work, all locks, cursors, and prepared statements are

restored to reflect their last use when the connection was current.

The DISCONNECT statement destroys specified connections. Once a connection to a relational database

is disconnected, an application must connect to that relational database again if SQL statements need to

be directed to the relational database. For protected conversations, the RELEASE statement must be used.

Conversation types in query management DRDA

Protected

A protected conversation is used for the connection to a relational database on a remote system. A

protected conversation is a conversation that uses two-phase commit protocols to ensure that, even if

a failure occurs, updates made on the remote system are synchronized with updates to other remote

or local resources.

Not Protected

A conversation that is not protected is used for the connection to a relational database on a remote

system. Therefore, if a failure occurs, updates made on the remote system cannot be synchronized

with updates to other remote or local resources.

Local

No conversation is used. The connection is to the local relational database. Two-phase commit

protocols are used to ensure that, even if a failure occurs, updates made to local system are

synchronized with updates to other remote or local resources.

156 System i: Query Management Programming

*ARDPGM

The connection is to be relational database accessed by an application requester driver (ARD)

program. SQL requests directed to the relational database are processed by the ARD program

specified on the relational database directory level.

Read-only connections in query management DRDA

YES

Connection is read-only. If running under commitment control, updates cannot be performed over

this connection.

NO

Connection is not read-only. Updates can be performed over this connection. If an update is

performed over this connection and the connection has a Conversation Type of Local or Protected,

then for this unit of work, updates are also allowed to all other connections that are not Read-Only

and that have a Conversation Type of Local or Protected. Otherwise, if an update is performed over

this connection and it has a Conversation Type of Not protected, then updates are only allowed over

this connection for the unit of work.

Status in query management DRDA

HLD

A held state means that a connection is not to be disconnected at the next commit operation. A

connection is placed in the held state by the CONNECT statement.

RLS

A released state means that a disconnect operation is to occur for the connection at the next successful

commit operation (a rollback has no effect on connections). A connection is placed in the released

state from the held state by the RELEASE statement. A connection in the released state cannot be put

into the held state.

Connection management method considerations in query management

DRDA

The connection management method affects the semantics of the query management CONNECT

command and affects when previous connections are disconnected. When a CONNECT operation is

performed while running under RUW connection management, RUW disconnects the previous

connection or connections before performing the connection. When a CONNECT operation is performed

while running under DUW connection management, the previous connections are not disconnected.

Using the DSQRDBCNNMTH keyword with START in query management DRDA

This keyword specifies which connection management method is to be used by query management.

Valid options for DSQRDBCNNMTH are:

*DUW

Connections to several relational databases are allowed. This is the default value for this variable.

Consecutive START or CONNECT commands to additional relational databases does not result in

disconnection of previous connections. SET CONNECTION can be used to switch between

connections. Read-only connections may result.

 If consecutive CONNECT commands to the same database are made, they will fail. However,

consecutive START commands to the same database are allowed.

*RUW

Only one connection to a relational database is allowed. Consecutive START or CONNECT

commands to additional relational databases will result in all previous connections being

disconnected before a new connection is established. If consecutive START or CONNECT commands

to the same database are made, there will be no change in the current connection.

Chapter 9. Distributed Relational Database Architecture in query management 157

Using the DSQSDBNM keyword with START in query management DRDA

If you use DSQSDBNM on the START command, the query instance is connected to the remote database

that you specified. This keyword indicates the remote database to which all SQL operations initiated by

query management during the query instance are to be directed. If this keyword is not specified on the

START command and the CONNECT command is not used, the connection associated with the query

instance is the CURRENT SERVER at the time of the START command. This is an inherited connection.

The connection information is associated with this query instance. All RUN QUERY, ERASE TABLE, and

SAVE DATA AS query management commands are directed to this connection.

Valid options for DSQSDBNM are:

*CURRENT

The instance inherits the connection associated with the CURRENT SERVER. If the remote database

name (rdbname) is in the Relational Database Directory, DSQSDBNM is set to CURRENT SERVER. If

the rdbname is not in the Relational Database Directory, DSQSDBNM is set to *NONE. The default

value is *CURRENT.

*NONE

The connection will be made to the local database manager. The local database does not need to be in

the Relational Database Directory. If the local database name is in the Relational Database Directory,

the DSQSDBNM is set to that name. If the local database name is not in the Relational Database

Directory, DSQSDBNM is set to *NONE.

rdbname

The remote database name is a means of identifying a database that can be accessed using DRDA. If

you specify a remote database name, you can use the DSQUSER and DSQPASSWORD keywords of

the START command to specify the user identification and password for the remote database.

DRDA and activation groups in query management

Each query instance has an associated database connection and an associated activation group. Each

activation group can have one or more connections associated with it. Query management allows an

application to manage the connections associated with the activation group that is associated with the

query instance. The connections can be managed using either the RUW or the DUW connection

management methods. The RUW connection management method allows one connection to be

maintained and DUW connection management method allows multiple connections to be maintained.

An application program can only use a query management instance if the activation group associated

with the program is also associated with that query management instance. Activation groups cannot

share a query management instance. Work done through a query management instance in one activation

group, has no effect on work done by a query management instance in another activation group.

DRDA and activation group considerations in query management

Only application programs created with ILE C can be associated with a nondefault activation group. The

DB2 for i5/OS query management function is associated with the default activation group. All query

management CL commands also run in the default activation group.

The application program that issues the call to the query Common Programming Interface to process a

CONNECT command must remain in the call stack. If it does not, an implicit disconnection occurs when

the application program ends. All RUN QUERY and ERASE TABLE commands are directed to the current

connection that is the connection associated with the query instance.

Default activation group in query management DRDA

Figure 43 on page 159 shows what happens between two programs that are associated with the default

activation group. Neither program is an ILE C program.

158 System i: Query Management Programming

Nondefault activation group in query management DRDA

Figure 44 shows the interaction of programs running in the same activation group. ProgramA and

ProgramB both run in activation group 2. After ProgramB returns to ProgramA, the CURRENT SERVER

is set to RDB2.

Default and nondefault activation groups in query management DRDA

Figure 45 on page 160 shows the interaction of programs running in the default and a nondefault

activation group. ProgramA and ProgramB both run in different activation groups. After ProgramB

returns to ProgramA, the CURRENT SERVER associated with ProgramA is still set to RDB1.

Figure 43. Programs running in the default activation group

Figure 44. Programs running in the same activation group

Chapter 9. Distributed Relational Database Architecture in query management 159

Two nondefault activation groups in query management DRDA

Figure 46 shows the interaction of programs running in different nondefault activation groups. ProgramA

and ProgramB both run in different activation groups. After ProgramB returns to ProgramA, the

CURRENT SERVER associated with ProgramA is still set to RDB1.

Command considerations with DRDA in query management

The following commands have special considerations when used with DRDA.

“SAVE DATA AS in query management DRDA” on page 161

“Other commands in query management DRDA” on page 161

Figure 45. Programs running in different activation groups

Figure 46. Programs running in different nondefault activation groups

160 System i: Query Management Programming

SAVE DATA AS in query management DRDA

You cannot use the SAVE DATA AS command to a remote connection. However, the results of a remote

query can be saved locally by switching the remote connection to a local connection before the SAVE

DATA AS command. Under RUW connection management, the CONNECT RESET command can be used

to establish a local connection. Under DUW connection management, if no previous local connection

exists, the CONNECT RESET command can be used to establish a local connection; otherwise, the SET

CONNECTION command must be used.

Other commands in query management DRDA

The query objects, source files, and print files referred to in the IMPORT, EXPORT, PRINT, and RUN

PROC commands are always retrieved locally, regardless of whether the connection is remote. The

application process does not need to be in a connectable state to run the IMPORT, EXPORT, PRINT, RUN

PROC, GET, and SET commands.

Commitment control in query management DRDA

Commitment control is the level at which updates to the database you are working on can be done. You

can specify what kind of commitment control you want your query management session to have.

Commitment control is specified using the DSQCMTLV keyword on the START command. The default

value is NONE. Setting this keyword to a value other than NONE lets query management run all session

SQL statements (using the RUN QUERY CPI command) under commitment control. You may then run a

query management COMMIT command or COMMIT and ROLLBACK SQL statements.

Note: SAVE DATA AS cannot be run with commitment control.

The DSQCMTLV keyword can have the following values:

NONE

Indicates that commitment control is not used. This is the same as the *NONE isolation level.

UR

Specifies that only the updated rows are locked until the end of the transaction. This is the same as

the *CHG isolation level.

CS

Specifies that any row that a cursor is positioned on is locked until the cursor position changes. The

updated rows are locked until the end of the transaction. This is the same as the *CS isolation level.

RS

Specifies that all of the rows selected or updated are locked until the end of the transaction. This is

the same as the *ALL isolation level.

RR

Specifies that all of the rows selected or updated are locked until the end of the unit of work (UOW).

This ensures that repeated reads within a unit of work always give the same results. This is the same

as the Serializable isolation level.

The keyword that is set for DSQCMTLV on the START command overrides any keyword value set for the

DSQCMTLV variable by the query command procedure. If nondefault activation groups are never used,

commitment control processing will use the job level commit definition.

ILE C considerations in query management DRDA

When query management is running with commitment control, a commit definition is used. A process

may have multiple commit definitions started. Commit definitions are either associated with the job or

with a specific activation group. Application programs associated with the default activation group use

the job level commit definition.

Chapter 9. Distributed Relational Database Architecture in query management 161

If a query management COMMIT command or a COMMIT SQL statement is run in the application

program:

v Only the work associated with the activation group level commit definition is committed.

v All work done in the application program under commitment control will be committed.

v Work done in other application programs in the same activation group will be committed. Work done

in application programs associated with other activation groups will not be committed.

v All connections in a released state will be disconnected.

Understanding commitment control for nondefault activation groups in query

management DRDA

An activation group level commit definition starts when a query instance implicitly starts if the following

are true:

v The application program has started a query instance with commitment control

v A job level commit definition was not started

By starting the query instance implicitly, the job level commitment definition is used if all of the

following are true:

v The application program is associated with a nondefault activation group

v The application program has started a query instance with commitment control

v A job level commit definition was started

v The activation group level commit definition is not started

Running a query management COMMIT command or COMMIT SQL statement in the application

program only commits the work that is associated with the activation group level commit definition. The

work done in other application programs in the default activation group will be committed. The work

done in other application programs in the default activation group will only be committed if the commit

definition for the activation group started after the job level commit definition started.

Understanding commitment control for default activation groups

If the application program is associated with a default activation group, and:

v If the application program has started a query instance with commitment control

v Whether or not a job level commit definition was started, starting the query instance that implicitly

uses the job level commit definition.

Running a query management COMMIT command or COMMIT SQL statement in the application

program commits all the work associated with the job level commit definition. The work done in other

application programs in the default activation group will be committed. The work done in application

programs associated with nondefault activation groups will not be committed.

For more information about commitment control and activation groups, see the Commitment control

topic in the i5/OS Information Center.

Remote processing and long column names in query management

DRDA

If a query is run against a system other than i5/OS and selects columns greater than 10 characters, the

full column name is displayed in the report and retained when data is saved to an output file. When the

data is saved to an output file, the first 10 characters of the name are used for the system column name.

162 System i: Query Management Programming

Chapter 10. Coded character set identifiers in query

management

A coded character set identifier (CCSID) is a 2-byte (unsigned) integer that uniquely identifies an

encoding scheme and one or more pairs of character sets and code pages. CCSID tagged data can be

converted so that it looks the same in different languages using the same character set. Data might not

look the same without conversion if the code pages differ, since it could contain a hexadecimal value

which looks like one character in the first language and another character in the second language.

Import CCSID processing in query management

When a Query Manager query or form is imported, it is marked with the CCSID of the file and no

CCSID conversion is done. When a Query Manager procedure is imported and the file it is imported to

does not exist, the file is created with the job CCSID. If the file does exist and the CCSID does not match

the imported from file, the procedure is converted to the CCSID of the file it is imported to.

Export CCSID processing in query management

When a Query Manager query, form, or procedure is exported and the source file does not exist, the

source file is created using the job CCSID. The source file is converted to the CCSID of the source file if

the Query Manager query, form, or procedure has a different CCSID.

Print CCSID processing in query management

When a Query Manager query, form, or procedure is printed, it is converted to the job CCSID. When

printing a report from a form that uses MIN, MAX or BREAKn, the sort sequence used to run the query

may need to be converted to a different CCSID for the report to format. If the user has a job CCSID other

than 65535, the sort sequence table must be converted to the job CCSID before the MIN, MAX and

BREAKn processing. If the user has a job CCSID of 65535, the sort sequence table must be converted to

the CCSID of the column upon which the MIN, MAX and BREAKn processing is done. The results of this

conversion impacts the appearance of the printed report.

Sort sequence CCSID processing in query management

When using a sort sequence table for data comparisons, the sort sequence table is always converted to

the CCSID of the data. If the CCSID conversion is successful, the displayed and printed reports are

completed successfully. Problems may arise under the following circumstances:

v Conversion with substitution characters

Some characters in the source CCSID may not be represented in the CCSID to which the table is being

converted. In this case, substitution characters are used when the converted sort sequence table is built.

Seemingly inconsistent comparisons may occur when formatted because all characters unknown to the

sort sequence table have the same weight. Normal CCSID conversion of the data also converts all

unknown characters to the same substitution value.

v Conversion failed

If the sort sequence table cannot be converted into the appropriate CCSID for doing MIN, MAX, and

BREAKn processing, the report formats, but the following message is sent to the job log.

QWM1723 - Cannot convert the sort sequence for use on column ColName.

© Copyright IBM Corp. 1998, 2008 163

This error is only generated for reports which require MIN, MAX or BREAKn processing. Detail values

for columns which use MIN, MAX, or BREAKn, use the sort sequence without displaying the

conversion error. All field and summary outputs are replaced with a row of question marks (’?’s) for

the width of the column.

Other considerations in query management CCSID

When imported and exporting procedures to source files with different CCSIDs, the procedure is first

converted to the job CCSID, then to the source file CCSID. To avoid this extra conversion, copy the

procedure to the other file instead of importing or exporting.

Query management forms are not converted to the job CCSID when they appear in a report. This might

make some parts of the form unrecognizable.

When a Query Manager report is displayed or printed, the data is converted to the job CCSID. When

saving data using the SAVE DATA AS command, if the file does not exist it is created using the CCSID of

the file where the data originated. If the data is saved to an existing file with a CCSID different from the

original file, the data is converted to the CCSID of the file it is being saved to. If the data is displayed

then saved, it is converted to the job CCSID when it is displayed and converted to the file CCSID when it

is saved. To avoid this extra conversion, specify DISPLAY=NO on the RUN QUERY command or specify

*OUTFILE for the output parameter on the STRQMQRY CL command.

Query management queries, forms, and procedures are converted to the job CCSID when they are

printed.

164 System i: Query Management Programming

Chapter 11. DB2 for i5/OS query management considerations

This chapter describes how query management interacts with other system functions and suggests some

techniques to help you work with the product.

“Override considerations in query management”

“Miscellaneous tips and techniques in query management” on page 167

“Runtime environment in query management” on page 180

“Limits to query management processing” on page 181

Override considerations in query management

You can use overrides specified by the Override Database File (OVRDBF) command to redirect a

reference to a different file. The following sections discuss some considerations of how overrides are

handled when query management processes different types of files.

Tables and views in query management

Override considerations for tables and views referred to in the Structured Query Language (SQL)

statement during a RUN QUERY command are the same as those used in SQL. The following parameters

are processed when you specify an override:

v TOFILE

v MBR

v SEQONLY

v LVLCHK

v INHWRT

v WAITRCD

SQL can process a member other than the first member in a query management query by specifying the

desired member with the MBR keyword on the OVRDBF command prior to the RUN QUERY.

The query fails if it selects a member from a file that has an override of MBR(*ALL). For more

information about using overrides in an SQL statement, see the SQL programming topic in the

information center.

Tables referred to by ERASE TABLE in query management

Overrides are ignored on the ERASE TABLE command.

Tables and views referred by SAVE DATA AS in query management

You can direct query management to process a file other than the table or view specified on the

command by using the OVRDBF CL command. Overrides are ignored if the file specified on the TOFILE

keyword of the OVRDBF command does not exist.

You can save data to a member other than the first member of the file by specifying the desired member

on the MBR keyword of the OVRDBF command before issuing the SAVE DATA AS command.

If you issue a SAVE DATA AS command to a file that has an override of MBR(*ALL), the command fails.

The following parameters are processed on the SAVE DATA AS command if an override is specified:

© Copyright IBM Corp. 1998, 2008 165

v TOFILE

v MBR

v SEQONLY

v LVLCHK

v INHWRT

v WAITRCD

IMPORT and EXPORT source files in query management

Overrides on the source files referred to by an IMPORT or EXPORT command are processed.

The following parameters are processed on an IMPORT or EXPORT command if an override is specified

on the source file:

v TOFILE

v MBR

An IMPORT from a source file that has an override of MBR(*ALL) is allowed. The IMPORT processes

each record of each member. The members are read in the order in which they are created. The IMPORT

completion message lists only the name of the first member processed during the import.

An EXPORT to a source file fails if it has an override of MBR(*ALL).

If an EXPORT refers to a file name that has an override, and the file to which the override is directed

does not exist, query management creates the file. The file is named the same as the name specified on

the TOFILE keyword on the OVRDBF command. For example, the following CL command was run prior

to calling query management:

 OVRDBF FILE(XYZ) TOFILE(MYLIB/MYFILE)

The file MYFILE in MYLIB does not exist. The following query management command results in the

creation of a source physical file named MYFILE created in the library MYLIB:

 EXPORT QUERY MYQUERY TO XYZ

A member name specified with an override takes precedence over a member name specified on the

command. For example, the following CL command was run prior to calling query management:

 OVRDBF FILE(XYZ) TOFILE(MYLIB/MYFILE) MBR(MEMBER2)

Issuing the following query management command results in the source for the query MYQUERY being

put in member MEMBER2 of file MYFILE in library MYLIB:

 EXPORT QUERY MYQUERY TO XYZ(MEMBER1)

Query procedures in query management

Overrides are not processed on files referred to as query procedures on RUN PROC, ERASE PROC,

PRINT PROC, IMPORT PROC, or EXPORT PROC commands. Overrides of other files processed by query

commands in procedures being run with the RUN PROC are processed. Overrides of the source files

specified on IMPORT PROC and EXPORT PROC commands are processed.

Query management cannot process overrides on any files while processing a procedure if those files have

the same name as the procedure being run. This rule applies to:

v The source file on an IMPORT PROC or EXPORT PROC command if the source file has the same name

as the procedure file.

v The source files on any IMPORT or EXPORT command that is run in a procedure with the same name,

or to any procedure nested in a procedure of the same name.

166 System i: Query Management Programming

v The file referred to on a SAVE DATA AS command if the command is run in a procedure with the

same name, or to any procedure nested in a procedure of the same name.

v A file referred to by the SQL statement in a query if the RUN query is run in a procedure with the

same name, or to any procedure nested in a procedure of the same name.

The following is an example of how overrides on PROC statements are processed.

v The following CL commands were run before calling query management:

 OVRDBF FILE(XYZ) TOFILE(MYLIB/MYFILE)

 OVRDBF FILE(ABC) TOFILE(MYLIB/MYFILE)

v The following commands result in processing the procedure ABC in MYLIB even though the above CL

command overrides file ABC to the file MYFILE.

 RUN PROC MYLIB/ABC

 PRINT PROC MYLIB/ABC

 ERASE PROC MYLIB/ABC

v The following IMPORT command imports the procedure ABC in MYLIB from the source file MYFILE

in MYLIB because the override was not processed for the query procedure, but it was for the source

file.

 IMPORT PROC MYLIB/ABC FROM MYLIB/XYZ

v The following EXPORT command imports the procedure ABC in MYLIB to the source file ABC in

MYLIB because the override was not processed for the query procedure. Because the file that was

specified on the source file was the same as the query procedure, overrides were not processed.

 EXPORT PROC MYLIB/ABC(MEMBER1) TO MYLIB/ABC(MEMBER2)

v The query called QUERY1 contains the SQL statement:

 SELECT * FROM MYLIB/ABC A1, MYLIB/XYZ A2 WHERE A1.X=B1.X

and the file MYLIB/ABC contains the command RUN QUERY QUERY1. The following RUN PROC

command runs the query procedure ABC in MYLIB. When the query is run, the data is selected from

the files ABC in MYLIB and MYFILE in MYLIB. The overrides for file ABC are not processed during

the processing of the query procedure ABC.

 RUN PROC MYLIB/ABC

For more information on overrides, see Database programming and File management.

Miscellaneous tips and techniques in query management

This section describes special applications for query management functions and suggests ways to use

other products and system functions to make working with query management easier. Many of the tips

and techniques involve using information from IBM Query for i5/OS objects. You should be familiar with

the information in Chapter 12, “Using IBM Query for i5/OS definition information in query

management” before using those tips and techniques.

Printing an object in query management

When printing any query management object, create a source file member and edit it. Use the following

instructions to complete the printing process using the member created:

v Print a query (QMQRY) object by putting the following statement in the source file member created at

the start of the session:

’PRINT QUERY libname/queryname (PRINTER= printername’

Then run the Start Query Management Procedure (STRQMPRC) CL command against the procedure

member to print the contents of the query management query.

v Print a form (QMFORM) object by putting the following statement in the source file member created at

the start of the session:

’PRINT FORM libname/formname (PRINTER= printername’

Chapter 11. DB2 for i5/OS query management considerations 167

Then run the Start Query Management Procedure (STRQMPRC) CL command to print the contents of

the query management form.

v Print a procedure (QMPROC) object by putting the following statement in the source file member

created at the start of the session:

’PRINT PROC libname/procedurename (PRINTER= printername’

Then run the Start Query Management Procedure (STRQMPRC) CL command against the procedure

member to print the contents of the query management procedure.

v Print an IBM Query for i5/OS QRYDFN object by putting either (or both) of the following statements

in the source file member created at the start of the session:

’PRINT QUERY libname/queryname (PRINTER= printername’

or

’PRINT FORM libname/formname (PRINTER= printername’

Then run the Start Query Management Procedure (STRQMPRC) CL command with the

ALWQRYDFN=YES keyword against the procedure member to print either the query or form part of

the QRYDFN object.

Changing STRQMQRY defaults for QRYDFN use in query management

If you prefer to use the WRKQRY command to develop and maintain the query and form information

used by query management, it might be convenient to use a copy of the STRQMQRY command that has

been changed to use defaults that let you run a QRYDFN object just by naming it. For example, you can

create the command STRQRYDFN in the current library for your job by entering the following

commands:

CRTDUPOBJ OBJ(STRQMQRY) FROMLIB(QSYS) OBJTYPE(*CMD) TOLIB(*CURLIB)

 NEWOBJ(STRQRYDFN)

CHGCMDDFT CMD(*CURLIB/STRQRYDFN) NEWDFT(’QMFORM(*QMQRY)’)

CHGCMDDFT CMD(*CURLIB/STRQRYDFN) NEWDFT(’ALWQRYDFN(*ONLY)’)

To run QRY1 in the current library (*CURLIB), type STRQRYDFN *CURLIB/QRY1, or just STRQRYDFN QRY1.

Displaying information about using QRYDFN Objects in query

management

To read about the system actions taken when there are problems deriving information from QRYDFN

objects, display the query management conversion messages using the following command string:

DSPMSGD RANGE(QWM2301 QWM2399) DETAIL(*BASIC)

The messages that are displayed may contain warnings about unexpected consequences of the system

action taken, or suggest ways of avoiding or minimizing problems of the sort diagnosed by the message.

Defining queries with global variables using IBM Query for i5/OS

IBM Query for i5/OS supports a data or text merge function that involves using dependent QRYDFN

objects that cannot be run the same as other QRYDFN objects. These objects are different because record

selection tests contain variables (dependent values). You can use query management to run these queries

if you assign the correct values to these variables.

When information for a query is derived from a dependent QRYDFN object, dependent values are

converted to global variables: :T01.cusnam becomes &T01_CUSNAM, for example. (You are prompted for a

value for T01_CUSNAM if you did not specify one on the SETVAR parameter when using the STRQMQRY

command to run the query.)

Use the SETVAR parameter to insert the value you want into the WHERE clause of the derived SELECT

statement. You could, for example, specify the value ‘“Smith” and an address like “%Apt%”’ for the

168 System i: Query Management Programming

T01_CUSNAM variable. (See Appendix C, “Use of quotation marks and apostrophes when setting global

variables in query management” for examples of setting global variables.)

You can create a CL program and command to improve the prompting, provide possible choices, and

restrict or validate the values entered.

Using IBM Query for i5/OS to create a QMFORM for an existing

QMQRY in query management

You can use IBM Query for i5/OS to define form information based on the system defaults if running an

existing QMQRY object with the system default (*SYSDFT) form does not produce the formatting results

you want. The following steps show the procedure for defining form information based on system

defaults:

1. Run the QMQRY object and save the data in a table.

2. Use WRKQRY option 1 (Create) to define a QRYDFN object.

a. Specify the table in which the data was saved as the file selection. (The definition of this table

provides the defaults for you to override.)

b. Consider using the following functions, which are tolerated but not supported by IBM Query for

i5/OS:

v &field insertion variables in page text

v &field insertion variables ended with an underscore character

v Variables other than break field insertion variables in break or final text

v &column# insertion variables ended with any nondigit character
c. Save your definition work as a QRYDFN object.

3. Request that query management use the form information from the new QRYDFN object when you

run the original query, or retrieve the form information and use it to create a QMFORM object to use

with the QMQRY object.

Displaying data from a single oversized record in query management

If you have a QRYDFN object that produces a single-record, multiple-column report that is too wide to

see in column-headed format, you can create a form that lets you see the whole report in captioned

format. Create the new form using the following steps:

1. Use the WRKQRY command to change the QRYDFN object:

a. Specify 0 length for all report columns.

b. Define page heading text with appropriately arranged captions and insert variables. Up to 3 lines

are available.

c. Use page footing text as desired.
2. Retrieve the form source, and make any desired adjustments (for example, additional page heading or

footing text lines, left alignment, or spacing).

3. Create the query management form object from the adjusted source.

4. Run the query using the form created to show the complete report.

The following is an example of a displayed single-record report in captioned form:

Attn (tele) . . . : Howard Jones (218-485-0162)

Account name . . : International Milling Company

Address : 4126 Kettering Memorial Parkway

City, state . . . : Fort Wayne, In.

Zip : 46815

Invoice # : B12358-9

Date shipped . . : 03/27/90

Hauler : Dave (3-7809)

Chapter 11. DB2 for i5/OS query management considerations 169

Using query management or CL commands in PDM options in query

management

You may find it convenient to use programming development manager (PDM) to work on lists of

QMQRY, QMFORM, or QRYDFN objects. Define options that run CL commands (for example,

STRQMQRY or ANZQRY) after substituting library and object names selected when you type the option

code beside a list entry. For example:

v Define option SQ to be:

STRQMQRY &L/&N QMFORM(*QMQRY) ALWQRYDFN(*ONLY).

Then use SQ to display a report using query and form information derived from a selected QRYDFN

object without having to remember to override the defaults QMFORM(*SYSDFT) and

ALWQRYDFN(*NO).

v Define option Z to be:

ANZQRY &L/&N 99.

Then type Z beside all the names in a list of QRYDFN objects to get completion messages. Check these

messages to see which QRYDFN objects might need adjustment for satisfactory query management

use.

You could define other options to run user-developed CL commands or to call user-developed CL

programs that act on query management objects.

Creating a CL program for permanent conversion of a QRYDFN object

in query management

You might want to create a CL program to convert QRYDFN objects to query management objects if this

operation is performed frequently. Define parameters for the program to specify object names and other

variables.

Figure 47 on page 171 is an example of the source for a program that converts QRYDFN information into

query management objects. This program assumes *LIBL should be searched for the QRYDFN object, and

that query management objects should be placed in *CURLIB. It shows the report produced from the

QRYDFN object by IBM Query for i5/OS, then the report produced from converted objects by query

management. If the request is not canceled, the program copies the converted objects from QTEMP to

*CURLIB.

170 System i: Query Management Programming

Querying for field values in query management

You can create a generic query to display an ordered list of the values used in a field of a particular file.

The library, file, and field names can be global variables to be set when the query is run. The following is

an example of a SELECT statement that creates a generic query:

SELECT DISTINCT &FIELD FROM &LIBRARY/&FILE ORDER BY 1

Run the QMQRY object created from this statement to get the list specified in the following SETVAR

parameter (this assumes you name the created QMQRY object qryvalues, and you have a database file

named staff, in the library testdata, with a field named dept):

STRQMQRY qryvalues SETVAR((FIELD dept) (LIBRARY testdata) (FILE staff))

Get a subset of the values by adding a record selection test when you set the variables:

STRQMQRY qryvalues SETVAR((FIELD dept) (LIBRARY testdata)

 (FILE ’staff where dept > 50’))

View all the columns (with no records duplicated) by using an asterisk (*) when you set the variables:

STRQMQRY qryvalues SETVAR((FIELD ’*’) (LIBRARY testdata) (FILE staff))

Make it easier to specify values for the global variables by writing simple CL prompting programs and

commands. Set it up so that you can get the list you want by typing:

q testdata/staff dept

This is a helpful command to use if you are using source entry utility (SEU) to edit query source and

want to see which values could be used in tests. SEU permits you to request a window for entering

system or user-defined commands.

 Columns . . . : 1 68 Edit USRLIB/QCLSRC

 SEU==> MIGRATE

 FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+...

 *************** Beginning of data *************************************

0001.00 PGM PARM(&OBJ)

0002.00 DCL VAR(&OBJ) TYPE(*CHAR) LEN(10)

0003.00 CRTSRCPF QTEMP/QQMQRYSRC 91

0004.00 MONMSG MSGID(CPF7302)

0005.00 CRTSRCPF QTEMP/QQMFORMSRC 162

0006.00 MONMSG MSGID(CPF7302)

0007.00 RUNQRY *LIBL/&OBJ OUTPUT(*)

0008.00 RTVQMQRY *LIBL/&OBJ QTEMP/QQMQRYSRC &OBJ ALWQRYDFN(*YES)

0009.00 MONMSG MSGID(QWM2701)

0010.00 CRTQMQRY QTEMP/&OBJ QTEMP/QQMQRYSRC &OBJ

0011.00 MONMSG MSGID(QWM2701)

0012.00 RTVQMFORM *LIBL/&OBJ QTEMP/QQMFORMSRC &OBJ ALWQRYDFN(*YES)

0013.00 MONMSG MSGID(QWM2701)

0014.00 CRTQMFORM QTEMP/&OBJ QTEMP/QQMFORMSRC &OBJ

0015.00 MONMSG MSGID(QWM2701)

0016.00 STRQMQRY QMQRY(&OBJ) QMFORM(*QMQRY)

0017.00 MONMSG MSGID(QWM2701 QWM2703) EXEC(RETURN)

0018.00 DLTQMQRY QMQRY(*CURLIB/&OBJ)

0015.00 MONMSG MSGID(CPF2105)

0019.00 CRTDUPOBJ OBJ(&OBJ) FROMLIB(QTEMP) OBJTYPE(*QMQRY) TOLIB(*CURLIB)

0020.00 DLTQMFORM QMFORM(*CURLIB/&OBJ)

0015.00 MONMSG MSGID(CPF2105)

0021.00 CRTDUPOBJ OBJ(&OBJ) FROMLIB(QTEMP) OBJTYPE(*QMFORM) TOLIB(*CURLIB)

0022.00 ENDPGM

 ****************** End of data **

Figure 47. CL source for permanent conversion program

Chapter 11. DB2 for i5/OS query management considerations 171

Passing variable values to a query in query management

Global variable names are not necessarily meaningful, and a user being prompted for a value may not

know what to type. You can write CL programs and commands to provide meaningful prompting and

validation of typed values. Figure 48 and Figure 49 show source statements that you can use to create a

program and to create a command for a query that shows an ordered list of values for a specified field in

the first member of a specified file. Create a CL program from the program source, then specify it as the

command processing program when the command is created from the command source.

 The following figure is a sample of a user-developed prompting display needed for passing variable

values:

 Query Column Values (Q)

 Type choices, press Enter.

 Table name Name

 Collection *LIBL Name, *LIBL, *CURLIB

 Column name

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Defining a column with no column heading in query management

To prevent a column from having a heading, specify *NONE in the leftmost position of the top heading

line shown when working on the definition under interactive data definition utility (IDDU) or when you

0001.00 PGM PARM(&FILE &FIELD)

0002.00 DCL VAR(&FILE) TYPE(*CHAR) LEN(20)

0003.00 DCL VAR(&LIB) TYPE(*CHAR) LEN(10)

0004.00 DCL VAR(&TABLE) TYPE(*CHAR) LEN(10)

0005.00 DCL VAR(&FIELD) TYPE(*CHAR) LEN(10)

0006.00 CHGVAR &LIB %SUBSTRING(&FILE 11 10)

0007.00 CHGVAR &TABLE %SUBSTRING(&FILE 1 10)

0008.00 STRQMQRY MYLIB/QRYVALUES SETVAR((LIBRARY &LIB)(FILE &TABLE)(FIELD &FIELD))

0009.00 ENDPGM

Figure 48. CL source for global variable prompting program

0001.00 Q: CMD PROMPT(’Query Column Values(Q)’)

0002.00 PARM KWD(FILE) TYPE(Q1) MIN(1) MAX(1) +

0003.00 PROMPT(’Table name’)

0004.00 PARM KWD(FIELD) TYPE(*CHAR) LEN(10) +

0005.00 PROMPT(’Column name’)

0006.00 Q1: QUAL TYPE(*NAME) LEN(10) MIN(1)

0007.00 QUAL TYPE(*NAME) LEN(10) +

0008.00 DFT(*LIBL) +

0009.00 SPCVAL(*LIBL (*CURLIB *CURLIB)) +

0010.00 PROMPT(’Collection’)

Figure 49. CL source for global variable prompting command

172 System i: Query Management Programming

are using the WRKQRY command to define an IBM Query for i5/OS QRYDFN object to which query

management is to be applied. You can also specify *NONE as the column heading in encoded form

source. In either case, the column still has separators unless you eliminate column heading separators

from the whole report, or specify *NONE for all column headings. To eliminate column heading

separators, retrieve and edit the appropriate field in the form source, and create the form again.

Using query management to format an ISQL-developed query

You can use Structured Query Language (SQL) interactively to develop a query that uses any of the

supported SQL database functions. By using the Interactive Structured Query Language (ISQL) product,

which exists on top of SQL, you can run SQL commands interactively. These functions include

subqueries, scalar functions, GROUP BY statements, and others not available through the IBM Query for

i5/OS prompted interface. The following steps describe how to get an ISQL-developed SELECT statement

into a QMQRY object, and how to use IBM Query for i5/OS to define information that query

management can use to format the displayed or printed output from running this QMQRY object:

1. Specify the Start Structured Query Language (STRSQL) command.

a. Use ISQL to develop the query you want.

b. Create a database (collection) to receive the output of this query, or use a previously created

collection.

c. Change the output device for the session to be a database file in the previously created collection.

Use a name (for example, QRYPURPOSE) that describes the purpose of the query.

d. Run the query again to create the file (table) QRYPURPOSE.

e. Save the query session as member QRYPURPOSE. Remember the file and library names you

specify so you can edit the session later for use as query management query source.

f. Exit the ISQL session.
2. Specify the Start System Entry Utility (STRSEU) command to edit the saved session.

a. Remove all lines other than those containing the SELECT statement that defines your query.

b. Add any comments that are needed.

c. Optionally replace appropriate elements in the SELECT statement with global variables.

d. Exit SEU, saving the changed member.
3. Use the Create Query Management Query (CRTQMQRY) command to create the QMQRY object

QRYPURPOSE from member QRYPURPOSE.

4. Specify the WRKQRY command and choose the Create option.

a. Select file QRYPURPOSE created in the ISQL session.

b. Specify report column formatting overrides. The defaults shown are the same as ISQL used to

show the report, but not the same as query management would use if you ran QRYPURPOSE

with the *SYSDFT form. If you want to use the defaults shown, make IBM Query for i5/OS treat

them as overrides so that they will be saved with the QRYDFN object. (Any change to column

headings causes the default to be considered overridden, even if you put back the original default

value. The same is true for length, decimal positions, and numeric editing.)

c. Use edit codes J (numeric values), J$ (currency values), and M (numeric identifiers) to define

editing that you can convert to query management edit codes, incorporating any decimal position

overrides that you specify.

d. Add any extra formatting you think will improve your report. You can, for example, define final

text and overall summaries to appear below columns defined as aggregating scalar functions in

the SELECT statement saved in QRYPURPOSE.

e. Save your formatting choices as QRYDFN object QRYPURPOSE.
5. Optionally retrieve form source from QRYDFN QRYPURPOSE and use it to create QMFORM

QRYPURPOSE.

Chapter 11. DB2 for i5/OS query management considerations 173

6. Use the STRQMQRY command to run query QRYPURPOSE. Use QMFORM(*QMQRY) and, if you did

not create a QMFORM from QRYDFN QRYPURPOSE, specify ALWQRYDFN(*ONLY) to force use of

formatting information derived from the QRYDFN object.

Figure 50 shows an ISQL-developed query.

 The following display shows the formatted report produced from the query in Figure 50. This report was

created by query management use of form information that was derived from a QRYDFN object created

from the ISQL output file definition.

 Display Report

 Query: USRLIB/MAXSALARY Width . . .: 36

 Form : USRLIB/MAXSALARY Column . .: 1

 Control

 Line |...+....1....+....2....+....3....+....4....+....5....+....6...

 Maximum

 Dept Salary

 ------------ ------------

 000001

 000002

 000003 10 $22,959.20

 000004 15 $20,659.80

 000005 20 $18,357.50

 000006 38 $18,006.00

 000007 42 $18,352.80

 000008 51 $21,150.00

 000009 66 $21,000.00

 000010 84 $19,818.00

 000011 ============

 000012 Overall maximum:

 000013 $22,959.20

 More...

 F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Using ISQL select report processing with referential constraints in

query management

You should keep the following in mind when using ISQL in an environment using the referential

constraint capabilities and features.

v If a selected table has a referential constraint, this constraint is not added to the output file when it is

created through ISQL *OUTFILE.

v When the result of a SELECT statement is output to an existing file, the *OUTFILE processing may fail

if the output table has a referential constraint that is violated. This error will not be detected until after

the existing file has been changed.

v Check-pending errors may occur when the result of a SELECT statement is output to a dependent or

parent file when an established/enabled constraint is in check-pending. Check-pending errors should

be caught before the existing file is changed.

 DB2 for i5/OS Query Management

 Query : MAXSALARY

 Library : USRLIB

 Text :

 SEQNBR *...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

 000001 select dept,max(salary) from testdata/staff group by dept

 * * * * END OF SOURCE * * * *

Figure 50. Sample printed ISQL-developed QMQRY object

174 System i: Query Management Programming

Using text insertion variables to stack captions on final summaries in

query management

The following figure shows a final level summary report with the summary values stacked and

captioned. It demonstrates that the final summary values can be kept on one page and shown in any

desired order instead of being spread over multiple displays or printer files in separate columns.

 The report was produced by query management from a single QRYDFN object with the following

characteristics:

v Summary-only output form

v No break fields selected

v Final level summaries not suppressed

v Summaries selected

v Length 0 specified for all summary fields to be used as inserts

v Cover page and page heading text containing the desired captions and headings with summary value

insert placement indicated by &#; references to output column numbers

Note: All field widths set to 0 is diagnosed, and no report is produced, when an attempt is made to

run the QRYDFN using IBM Query for i5/OS.

Using text in combination with tabular layout in query management

Text insertion can be used in combination with tabular layout. To produce the example that follows,

record selection tests were defined for a QRYDFN object with the characteristics described in the previous

tip. Record selection tests were defined to limit the output to a particular customer (specified at run time

because of the use of a global variable), and MIN and COUNT functions were defined to supply the

inserts for the cover page text used to define the label and for the final text.

/\

 (Salary analysis for 35 employees in department 10)

 Minimum.....:$10,506

 Maximum.....:$22,959

 Average.....:$16,676

 Total......:$583,647

/\

Figure 51. Final level summary values as cover page and heading text insertions

/\

 (Orders Inquiry)

 Herman B. Wannamaker

 3124 Melrose Ave - Apt 35

 Gooseneck, NY 55945

 TOTAL AVG MAX MIN

 Charges Price Price Price

-------------- ------------ ------------ ------------

 $3,859.72 $79.54 $1024.89 $3.50

Number of transactions: 35

/\

Figure 52. Final level text insertions with summary table

Chapter 11. DB2 for i5/OS query management considerations 175

Converting a multiple-level summary-only QRYDFN in query

management

The following figures show summary-only reports that have both break summaries and final summaries.

The query management report, which presents the information in a more readable form, was produced

with the lowest-level summaries and the other summaries. The lowest-level summaries come from SQL

column functions in a query-defining QRYDFN object and the other summaries come from column

usages in a second, form-defining QRYDFN object. Here is how it was done. A copy of the original

QRYDFN was changed to collapse all levels and suppress final summaries, then saved for use as the

query. Another copy was changed to suppress summaries at the lowest level, then saved for use as the

form. Then STRQMQRY was applied to the query and form with the use of QRYDFN objects allowed.

Note that the overall average is really an average of averages.

 Salary Report Summary, 1989

 AVERAGE MINIMUM MAXIMUM

Job Years Salary Salary Salary

----- ------- --------- --------- ---------

CLERK 0 $12,655.98 $11,508.60 $13,504.60

 1 $10,988.00 $10,988.00 $10,988.00

 3 $12,689.78 $12,009.75 $13,369.80

 4 $12,258.50 $12,258.50 $12,258.50

 5 $12,769.35 $12,508.20 $13,030.50

 6 $12,482.95 $10,505.90 $14,460.00

 8 $14,252.75 $14,252.75 $14,252.75

 ----------- ----------- ------------

Overall CLERK:

 $12,585.33 $10,505.90 $14,460.00

MANAGER 5 $18,383.50 $17,506.75 $19,260.25

 6 $21,150.00 $21,150.00 $21,150.00

 7 $19,889.83 $18,352.80 $22,959.20

 9 $18,555.50 $18,555.50 $18,555.50

 10 $20,162.60 $19,818.00 $20,659.80

 12 $21,234.00 $21,234.00 $21,234.00

 ----------- ----------- ------------

 Overall MANAGER:

 $19,895.80 $17,506.75 $22,959.20

SALES 0 $16,808.30 $16,808.30 $16,808.30

 4 $16,858.20 $16,858.20 $16,858.20

 5 $15,454.50 $15,454.50 $15,454.50

 6 $18,488.08 $18,001.75 $19,456.50

 7 $17,333.78 $16,502.83 $17,844.00

 8 $18,171.25 $18,171.25 $18,171.25

 9 $18,674.50 $18,674.50 $18,674.50

 13 $21,000.00 $21,000.00 $21,000.00

 ----------- ----------- -----------

Overall SALES:

 $17,848.36 $15,454.50 $21,000.00

 =========== =========== ===========

Overall:

 $16,679.64 $10,505.90 $22,959.20

06/18/90 09:50:21

Figure 53. Form usages applied to SQL column functions

176 System i: Query Management Programming

06/21/90 14:23:04 Salary Report Summary, 1989 Page 1

Job Years Salary

CLERK 0

 AVG $12,655.98

 MIN $11,508.60

 MAX $13,504.60

CLERK 1

 AVG $10,988.00

 MIN $10,988.00

 MAX $10,988.00

CLERK 3

 AVG $12,689.78

 MIN $12,009.75

 MAX $13,369.80

CLERK 4

 AVG $12,258.50

 MIN $12,258.50

 MAX $12,258.50

CLERK 5

 AVG $12,769.35

 MIN $12,508.20

 MAX $13,030.50

CLERK 6

 AVG $12,482.95

 MIN $10,505.90

 MAX $14,460.00

CLERK 8

 AVG $14,252.75

 MIN $14,252.75

 MAX $14,252.75

CLERK

 Overall CLERK:

 AVG $12,612.61

 MIN $10,505.90

 MAX $14,460.00

MANAGER 5

 AVG $18,383.50

 MIN $17,506.75

 MAX $19,260.25

MANAGER 6

 AVG $21,150.00

 MIN $21,150.00

 MAX $21,150.00

Figure 54. Report with multiple break levels - IBM Query for i5/OS (Part 1 of 3)

Chapter 11. DB2 for i5/OS query management considerations 177

06/21/90 14:23:04 Salary Report Summary, 1989 Page 2

Job Years Salary

MANAGER 7

 AVG $19,889.83

 MIN $18,352.80

 MAX $22,959.20

MANAGER 9

 AVG $18,555.50

 MIN $18,555.50

 MAX $18,555.50

MANAGER 10

 AVG $20,162.60

 MIN $19,818.00

 MAX $20,659.80

MANAGER 12

 AVG $21,234.00

 MIN $21,234.00

 MAX $21,234.00

MANAGER

 Overall MANAGER:

 AVG $19,805.80

 MIN $17,506.75

 MAX $22,959.20

SALES 0

 AVG $16,808.30

 MIN $16,808.30

 MAX $16,808.30

SALES 4

 AVG $16,858.20

 MIN $16,858.20

 MAX $16,858.20

SALES 5

 AVG $15,454.50

 MIN $15,454.50

 MAX $15,454.50

SALES 6

 AVG $18,488.08

 MIN $18,001.75

 MAX $19,456.50

SALES 7

 AVG $17,333.78

 MIN $16,502.83

 MAX $17,844.00

Figure 54. Report with multiple break levels - IBM Query for i5/OS (Part 2 of 3)

178 System i: Query Management Programming

Sorting and subsetting break-level summary groups in query

management

If you have a QRYDFN or QMQRY object that produces a break-level summary report (the SQL

statement contains SQL column functions and a GROUP BY clause), you can create source for a QMQRY

object that uses column function values to exclude unwanted groups and that orders the remaining

groups based on the summary outcome. You can do this by editing HAVING and ORDER BY clauses in

the retrieved source. The following statement produces a list of overdraft totals and counts ordered by

account number, for a set of account numbers.

SELECT ACCTNUM, COUNT(*), SUM(OVRDRFT) FROM ACCTINFO/OVRDRFTS

GROUP BY ACCTNUM ORDER BY ACCTNUM

The following statement excludes account numbers with overdraft totals within an allowed limit and

orders the rest by overdraft total (descending) and number of overdrafts (ascending):

SELECT ACCTNUM, COUNT(*), SUM(OVRDRFT) FROM ACCTINFO/OVRDRFTS

GROUP BY ACCTNUM HAVING SUM(OVRDRFT) > 100

ORDER BY 3 DESC, 2, ACCTNUM

Adding SQL function in query management

You can add SQL function that is not supported by IBM Query for i5/OS by changing a QRYDFN object,

or by editing a query management source member retrieved from a QRYDFN object. The following list

describes how to obtain additional SQL function:

v Use the Work with Query (WRKQRY) command to define functions that are tolerated but not

supported by IBM Query for i5/OS:

– &field insertion variables in page text

– &field insertion variables ended with an underscore character

– Other than break field insertion variables in break or final text

06/21/90 14:23:04 Salary Report Summary, 1989 Page 3

Job Years Salary

SALES 8

 AVG $18,171.25

 MIN $18,171.25

 MAX $18,171.25

SALES 9

 AVG $18,674.50

 MIN $18,674.50

 MAX $18,674.50

SALES 13

 AVG $21,000.00

 MIN $21,000.00

 MAX $21,000.00

SALES

 Overall SALES:

 AVG $17,869.36

 MIN $15,454.50

 MAX $21,000.00

 Overall:

 AVG $16,675.64

 MIN $10,505.90

 MAX $22,959.20

* * * E N D O F R E P O R T * * *

Figure 54. Report with multiple break levels - IBM Query for i5/OS (Part 3 of 3)

Chapter 11. DB2 for i5/OS query management considerations 179

– &column# insertion variables ended with any nondigit character.
v Use the Start Source Entry Utility (STRSEU) command to edit retrieved source to add functions that

cannot be defined using the WRKQRY command

1. Retrieve the source from a QRYDFN object or query management query (QMQRY) or query

management form (QMFORM) object using the RTVQMQRY and RTVQMFORM CL commands

with the ALWQRYDFN(*YES) parameter.

2. Edit the source to add the desired functions (see SQL functions that can be added in query

management, below).

3. Use the edited source to create a QMQRY or QMFORM object that can be referred to in subsequent

query management requests using the CRTQMQRY and CRTQMFORM CL commands.
v Use the DB2 Query Manager product to change the QMQRY or QMFORM objects to add SQL

functions. For more information, see Query Manager Use.

SQL functions that can be added in query management

You can add the following functions to query management query source:

v DISTINCT records instead of ALL records

v Selection of all fields using an asterisk (*)

v SQL naming conventions in the FROM clause

v Column or scalar function as an SQL expression or predicate test value

v NOT as a search condition qualifier

v GROUP BY and HAVING clauses

v Use of parentheses with connectors

You can add the following functions to query management form source:

v Character field editing

v Different query management edit codes for numeric editing

v Explicit column width control

v FIRST and LAST column functions

v Ability to use more than 9 break columns

v Resequencing in form definition

v Report area spacing

v Summary value placement on a line other than line 2

v Break heading text

v Additional (more than i5/OS limits) text lines

v Text line alignment

v Control of framing (separators, default break text, or outlining, for example)

See the SQL reference for detailed information about SQL syntax for editing query source and the

encoded form layout for editing form source.

Runtime environment in query management

For performance reasons, Query Manager does not end its runtime environment at command completion.

The result is a faster start when the next Query Manager command is issued. To accomplish this, a small

amount of storage is retained. To stop the runtime environment, use the command:

ENDEPMENV QQXCPIENV

180 System i: Query Management Programming

Limits to query management processing

Query management may not be able to process a report in the manner that you prefer. The following

sections discuss the limits to query management processing.

Query management command

The command string on the callable interface is limited to 256 bytes. The command string in a procedure

prior to removing the quotation marks is also limited to 256 bytes.

You can specify a limit of 1000 keywords and variables on a single command. This is a combined total of

the keywords or variables specified as part of the command string and keywords or variables specified

through the extended interface. Duplicate occurrences of the same keyword or variable count as part of

the limit.

SQL query in query management

The size of the SQL query statement after blanks and comments are removed is limited to 32 KB minus 1

byte.

Externalized query in query management

The following limits exist on the source file that makes up the externalized query:

v Data in columns past column 79 is ignored if the record width is greater than 79 bytes.

v You can specify a maximum of 211 929 lines of source text.

Externalized form in query management

The following limits exist on the source file that makes up the externalized form:

v Data in columns past column 150 is ignored if the record width is greater than 150 bytes.

v Since query management allows duplicate information sections in the externalized form object and

allows a file to have an override of MBR(*ALL), there is almost no limit to the number of source

records in an externalized form that can be handled.

Instances in query management

You can specify a maximum of 25 query management instances per process or job that are active at any

one time.

Global variables in query management

A maximum of 1000 unique global variables can be set for each query management instance.

Procedure limits in query management

Query management supports any file width when running and printing a query procedure. When

exporting and importing a query procedure, if the source file that is the target of the command is created,

it is created with a width of 79 bytes. If the target of the command already exists and has a width less

than the source, data might be truncated. If the target has a width greater than the source, no data is lost,

and each record is padded with blanks.

Chapter 11. DB2 for i5/OS query management considerations 181

182 System i: Query Management Programming

Chapter 12. Using IBM Query for i5/OS definition information

in query management

IBM Query for i5/OS definitions contain specifications for functions that are common to the following:

v IBM Query for i5/OS

v Query management CPI query

DB2 for i5/OS is able to use this information, saved in IBM Query for i5/OS definition (QRYDFN)

objects, to produce reports. This chapter describes how to control DB2 for i5/OS query management use

of the information that is contained in QRYDFN objects and what to do to get the best possible results.

See “Miscellaneous tips and techniques in query management” on page 167 for additional information

about using IBM Query for i5/OS QRYDFN objects.

Query management is able to derive information for running queries and formatting reports from

QRYDFN objects created by IBM Query for i5/OS. Conversion to query management query (QMQRY)

and query management form (QMFORM) objects is not required. Refer to the DSQSCNVT parameter of

the CPI START command for information about how to take advantage of this capability from a

user-written program. Refer to the ALWQRYDFN parameter on the following CL commands for

information about how to take advantage of this capability interactively or from a CL program:

v STRQMPRC - run a procedure (a stored sequence of CPI commands)

v STRQMQRY - run a query and either save the data or format a report

v RTVQMQRY - retrieve editable query management query source

v RTVQMFORM - retrieve editable query management form source

Some of the functions that can be specified and saved in a QRYDFN object cannot be transformed into

query-management-supported functions, and some cannot be precisely transformed. Except for the case

where a SELECT statement grows beyond 32 KB in length and it is not possible to use the derived query

information, query management uses the derived information and issues no warnings about the actions

taken (truncation, and so on) when a transformation problem is encountered. The ANZQRY command

provides analysis in the form of messages and online help information that suggest ways of dealing with

transformation problems.

Different, and possibly unacceptable, output can be produced from derived information even when there

are no transformation problems. Query management can provide different defaults for functions that

cannot be specified, or use successfully transformed choices differently. The following sections contain

more information about the differences to expect when comparing query management output with that

from IBM Query for i5/OS, as well as suggestions about what to do to get the best results from the use

of information saved in a QRYDFN object.

Because the information saved in a QRYDFN object does not provide complete access to the query

management function, and because it is less efficient to derive information from QRYDFN objects than

from query management objects, many users will want to convert QRYDFN objects to the corresponding

QMQRY and QMFORM objects. See “Creating DB2 for i5/OS query management objects from QRYDFN

objects” on page 193 for an explanation of how to retrieve (export) information from QRYDFN objects

and use it to create (import) query management objects.

© Copyright IBM Corp. 1998, 2008 183

QRYDFN conversion in query management

When a query management query (QMQRY) or a query management form (QMFORM) object is needed

for command processing, DB2 for i5/OS query management ordinarily searches the library or library list

for an object of that type with a name that matches the one specified. You can force DB2 for i5/OS query

management either to skip this search or to search the library or library list for an IBM Query for i5/OS

definition (QRYDFN) with the specified name. If a QRYDFN object is found to match the search, the

query or form information required for processing is derived from this object, and appropriate messages

and codes are returned to indicate that this has happened. Refer to other topics in this chapter for details

about how this information is derived.

DB2 for i5/OS query management uses information from a QRYDFN object regardless of any problems

encountered while deriving that information. No messages about possible defects or functional

differences are generated when the QRYDFN object is used.

The derived information is discarded when the request is completed. Permanent conversion to DB2 for

i5/OS query management objects can be done by retrieving the query or form source from a QRYDFN

object, and then using that source to create the DB2 for i5/OS query management object of that type.

Applying DB2 for i5/OS query management to QRYDFN objects

DB2 for i5/OS query management normally uses information only from DB2 for i5/OS query

management objects. You can request that DB2 for i5/OS query management use IBM Query for i5/OS

information if DB2 for i5/OS query management form or query information is not available. You can also

prevent DB2 for i5/OS query management form or query information from being used.

On the START command, specify either:

v DSQSCNVT=YES or

v DSQSCNVT=ONLY

When using the following CL commands:

v STRQMPRC (Start Query Manager Procedure)

v STRQMQRY (Start Query Manager Query)

v RTVQMQRY (Retrieve Query Manager Query)

v RTVQMFORM (Retrieve Query Manager Form)

specify either ALWQRYDFN(*YES) or ALWQRYDFN(*ONLY) to set the DSQSCNVT value.

Note: Query management resolves names specified for any QMQRY or QMFORM keyword by looking

only for QRYDFN objects if the DSQSCNVT value is *ONLY.

The CPI commands shown in the following examples can be coded in a program (you code the START

command) or procedure (you code the STRQMPRC command) and applied directly to QRYDFN objects:

v RUN QUERY myqrydfn

v RUN QUERY myqrydfn (FORM=myqrydfn

v RUN QUERY myqrydfn (FORM=myqrydfn2

v RUN QUERY myqmqry (FORM=myqrydfn

v RUN QUERY myqrydfn (FORM=myqmform

v PRINT REPORT (FORM=myqrydfn

v PRINT QUERY myqrydfn

v PRINT FORM myqrydfn

v EXPORT QUERY myqrydfn

v EXPORT FORM myqrydfn

184 System i: Query Management Programming

Note: myqrydfn and myqrydfn2 must have unique names so that query management does not find a query

or form object of the same name if the DSQSCNVT value is YES instead of ONLY when it searches

for an object to use.

If you do not want Query for i5/OS definitions to be used during DB2 for i5/OS query management

processing, allow DB2 for i5/OS query management to use the default DSQSCNVT=NO on the START

command or use ALWQRYDFN(*NO) on the STRQMPRC, STRQMQRY, RTVQMQRY, or RTVQMFORM

CL command. Another way to stop query management from using a QRYDFN object is to exclude the

library that contains the Query for i5/OS definition from the library or library list that query

management searches for the information.

You cannot directly apply DB2 for i5/OS query management to queries created in a System/36™

environment. However, you can use the Convert System/36 Query (CVTS36QRY) command to convert a

System/36 query to a Query for i5/OS definition. DB2 for i5/OS query management information can

then be derived from the QRYDFN object that is converted from the System/36 query.

QRYDFN conversion considerations in query management

A complete conversion of all of the choices specified in the query definition (QRYDFN) might not be

possible. Some IBM Query for i5/OS functions are not applicable to DB2 for i5/OS query management

reports and queries, and other functions, while similar, cannot be converted without loss or distortion.

The information derived from a QRYDFN object might be unacceptable for use as a query management

query (QMQRY) or query management form (QMFORM). The report or data record output that is

produced from it can have obvious defects, or it can be so different from the report or data record output

produced by Query for i5/OS that it cannot be used for the same purpose. (See “Using the STRQMQRY

command instead of the RUNQRY command in query management” on page 194 for a list of situations

when the result of using the STRQMQRY command instead of the RUNQRY command will probably be

unacceptable.) However, you might be able to eliminate unacceptable differences by working on the

Query for i5/OS definition to make simple adjustments.

Report differences in query management

The following figures show sample report pages contrasting a printed report produced by IBM Query for

i5/OS with a printed report produced by query management from information derived from the same

IBM Query for i5/OS definition. This definition was picked to show what can happen when derived

information is used, and is not necessarily representative of what you can expect from most of your IBM

Query for i5/OS definitions.

Chapter 12. Using IBM Query for i5/OS definition information in query management 185

/\\/\/\/\

 08/11/90 12:25:21 Page 1

DEPT SALARY COMM Commission

 as percent of salary

 10 19,260.25 .00 .00

 20,010.00 .00 .00

 21,234.00 .00 .00

 22,959.20 .00 .00

 Dept 10 summary information

 MIN 19,260.25 .00

 MAX .00

 15 12,258.50 110.10 .01

 12,508.20 206.60 .02

 16,502.83 1,152.00 .07

 20,659.80 .00 .00

 Dept 15 summary information

 MIN 12,258.50 .00

 MAX 1,152.00

 Year 1988 - salary and commission survey

 MIN 12,258.50 .00

 MAX 1,152.00

* * * END OF REPORT * * *

/\

Figure 55. IBM Query for i5/OS output before adjustment

186 System i: Query Management Programming

The following figures show sample report pages contrasting the printed output from query management

with that from IBM Query for i5/OS after the following minor changes were made to the QRYDFN

object:

v Space before first column overridden to 3

v Length 2 and dec pos 2 specified for the result field size

v Underscores removed from column heading text

v Break and final text condensed

v Page footing text condensed and &PAGE variable removed

/\\/\/\/\/\/\/\/\/\/\

 Commission

 as percent of salary

 MIN MIN MAX

 DEPT SALARY COMM COMM _______________

------ -------- ------- ------ --------------------------

 10 19,260.25 .00 .00 .000000000000000000000000

 20,010.00 .00 .00 .000000000000000000000000

 21,234.00 .00 .00 .000000000000000000000000

 22,959.20 .00 .00 .000000000000000000000000

 ------------ -------- --------

Dept 10

 19,260.25 .00 .00

 15 12,258.50 110.10 110.10 .0089815230248399070033038

 12,508.20 206.60 206.60 .0165171647399306055227770

 16,502.83 1,152.00 1,152.00 .0698062089956692276415620

 20,659.80 .00 .00 .0000000000000000000000000

 ------------ --------- ---------

Dept 15

 12,258.50 .00 1,152.00

 ============ ========= ==========

Year 19

 12,258.50 .00 1,152.00

 Page 1 ************************* IBM

08/11/90 11:58:42 1

\/\

Figure 56. Query management output before adjustment

Chapter 12. Using IBM Query for i5/OS definition information in query management 187

/\\/\/\/\

 08/11/90 12:25:21 Page 1

 DEPT SALARY COMM Commission

 as percent of salary

 10 19,260.25 .00 .00

 20,010.00 .00 .00

 21,234.00 .00 .00

 22,959.20 .00 .00

 Dept 10 :

 MIN 19,260.25 .00

 MAX .00

 15 12,258.50 110.10 .01

 12,508.20 206.60 .02

 16,502.83 1,152.00 .07

 20,659.80 .00 .00

 Dept 15 :

 MIN 12,258.50 .00

 MAX 1,152.00

 Year 1988 :

 MIN 12,258.50 .00

 MAX 1,152.00

* * * END OF REPORT * * *

/\

Figure 57. IBM Query for i5/OS output after adjustment

\/\

 MIN MIN MAX Commission

 Dept SALARY COMM COMM as percent of salary

------- --------- --------- ---------- --------------------

 10 19,260.25 .00 .00 .00

 20,010.00 .00 .00 .00

 21,234.00 .00 .00 .00

 22,959.20 .00 .00 .00

 ----------- --------- -----------

Dept 10:

 19,260.25 .00 .00

 15 12,258.50 110.10 110.10 .01

 12,508.20 206.60 206.60 .02

 16,502.83 1,152.00 1,152.00 .07

 20,659.80 .00 .00 .00

 ----------- --------- -----------

Dept 15:

 12,258.50 .00 1,152.00

 =========== ========= ============

Year 1988:

 12,258.50 .00 1,152.00

08/11/90 12:25:04 1

/\

Figure 58. Query management output after adjustment

188 System i: Query Management Programming

Perform the following steps if you use DB2 for i5/OS query management regularly to run a particular

query:

1. Analyze the QRYDFN using the Analyze Query (ANZQRY) command and read all the diagnostic

messages produced. Respond appropriately to ANZQRY diagnostic text warnings about actions you

might need to take before using the Start Query Management Query (STRQMQRY) command.

2. Use the STRQMQRY command and inspect the output carefully. You might find undiagnosed defects

or discover that some of the ANZQRY diagnostic messages can be disregarded.

3. Use the Work with Query (WRKQRY) command to display the QRYDFN object. Check the definition

displays for deviations from the compatibility guidelines shown in “Applying QRYDFN option

guidelines in query management” on page 190. Use the Change option to make adjustments to

improve your output.

4. Check the list of IBM Query for i5/OS and DB2 for i5/OS query management differences (see “IBM

Query for i5/OS and DB2 for i5/OS query management differences” on page 192) and act on those

that apply.

Analyzing QRYDFN in query management

Use the Analyze Query (ANZQRY) command to inspect an IBM Query for i5/OS definition to find

problems that might occur when deriving information for DB2 for i5/OS query management use. The

ANZQRY command returns diagnostic messages that detail the potential differences between how IBM

Query for i5/OS and DB2 for i5/OS query management use information that is derived from the

analyzed QRYDFN object.

A completion message shows the highest severity of the potential problems found. If the severity code is

greater than 10, the message help may contain warnings about easily overlooked and possibly serious

problems involving the system actions stated in the messages.

A low severity code does not necessarily mean there will be no serious problem when you use the

derived information, nor does a high severity code mean that the QRYDFN should not be used. Consider

the following when using the ANZQRY command:

v Analyze processing checks the information contained in the specified file but ignores any database file

overrides in effect. There is no verification that the information saved in the QRYDFN object is still

comparable to that found in the file definitions.

v Analyze processing does not predict errors that could occur during conversion, such as a SELECT

statement that becomes too large.

v Analyze processing does not predict errors that could occur during run time, such as the following:

– Structured Query Language (SQL) syntax errors (unacceptable use of expressions or decimal

numbers)

– SQL data errors (missing fields, mismatched type comparisons)

– Excessive formatted report width

– Inappropriate field data types for the specified usage or editing.
v Analyze processing ignores the following differences between IBM Query for i5/OS and DB2 for i5/OS

query management:

– Loss of translatable final totals text

– Loss of leading blanks in column heading lines

– Different alignment of oversized column headings

– Breaking of column heading lines at underscore characters

– No extension of break or final text into space before summary

– No extension of break or final text past last data column

– Different summary types on the same line

– Different defaults for result field size

Chapter 12. Using IBM Query for i5/OS definition information in query management 189

– Different algorithms for calculation of result scale and precision

– Different values from calculations involving data of certain types

– Different handling of data comparisons of DBCS character

– Different handling of native-format dates (DB2 for i5/OS query management ignores i5/OS date

formats like *MDY (2-digit year) as specified in the file definition and uses one of the SQL formats)
v Severity codes do not take into account the number of messages generated by the analyze processing,

and can be misleading because a diagnosed problem may not be as severe as indicated. For example,

no longer ignoring decimal data errors may not be a problem for a particular query, but it is diagnosed

as a severity 30 problem even for a query with no numeric fields.

Inspecting the output in query management

In some cases, the only way to detect defects and unacceptable differences is to inspect the output. This

might also be the only way to evaluate the actual severity of an ANZQRY-diagnosed problem. Use the

STRQMQRY command for DB2 for i5/OS query management and the RUNQRY command for IBM

Query for i5/OS to get comparable command output.

Look for the following differences when running a derived query:

v Records not coming from the *LAST member or the member specified by name

v Omission of unmatched records

v Loss of columns or different column order

v Columns added for extra summary functions

v Different record order or selection set

v Different length or precision of result field data columns

v Different values or unexpected numeric overflow in result fields

v Different values or unexpected numeric overflow of sums or averages

v Divide-by-zero errors for numeric calculations

Look for the following differences when displaying or printing a report using a derived form:

v Text truncation

v Unresolved text insertion variables

v Different editing

v Different report column width

v Different heading or footing alignment

v No line wrapping

v No cover page

v No page number or date and time information in page headings

Applying QRYDFN option guidelines in query management

You can avoid many potential problems by following the usage guidelines for definition displays when

you create or change an IBM Query for i5/OS definition that is intended for DB2 for i5/OS query

management use. Use the WRKQRY command to create a new QRYDFN object, or change an existing

object and ensure the option fields contain values that are recommended for DB2 for i5/OS query

management compatibility. Use the following guidelines when you specify values for the following

options in a QRYDFN object that is destined for DB2 for i5/OS query management use:

v Specify file selections.

– Select only files with single formats.

– Select only the *FIRST member.

– Specify the type of join.

190 System i: Query Management Programming

– Use only matched record joining.
v Define result fields.

– Use size overrides if an expression involves division.

– Use size overrides only for numeric column formatting control.

– Use an underscore character in a column heading only where you want the line to break text.

– Do not use column headings with data alignment dependencies.

– Do not use multiple-line figures in column headings.

– Do not use a line for column heading separator characters.

– Use SUBSTR (not a formatting override) to reduce character field size.
v Select and sequence fields.

– Make specific field selections.

– Do not select more than 255 fields.
v Select records.

– Do not use LIKE to test a result field defined using || or SUBSTR.

– Use dependent value syntax where a global variable is desired.
v Select sort fields.

– Do not sort a character field unless EBCDIC sequencing is acceptable.
v Select collating sequence.

– Select EBCDIC sequencing.
v Specify report column formatting.

– Allow space for break or final text to the left of summaries.

– Override the column heading if overriding the length of a file field.

– Use an underscore character in a column heading only where you want the line to break text.

– Do not use column headings with data alignment dependencies.

– Do not use multiple-line figures in column headings.

– Do not use a line for column heading separator characters.

– Do not omit break fields.

– Override editing when overriding numeric file field size.
v Define numeric field editing.

– Use edit code or numeric editing choices.
v Specify edit code.

– Use only J and M edit codes.

– Do not use the modifier for the asterisk fill option.

– Do not use the modifier for a floating currency symbol with M specified as the edit code.
v Describe numeric field editing.

– Use a description that can be converted to a query management edit code.

– Do not request suppression of zero values.

– Do not request asterisk fill.

– Do not request a single leading zero.
v Select report summary functions.

– Do not request more than one summary function per field unless you want columns added for the

extra functions.

– Do not request a summary function for a break field unless you want a column added for that

function.
v Define report breaks.

Chapter 12. Using IBM Query for i5/OS definition information in query management 191

– Do not break on a result field if you want detail records to be omitted.

– Define only one level if you want detail records to be omitted.
v Format report breaks.

– Do not use break text if the first report field has a summary function.

– Use any report field name for a break text variable.

– Define final text to replace the Final Totals default.

– Omit level 0 summaries if some other level is defined and you want detail records to be omitted.
v Select output type and output form.

– Do not define a query for producing summary-only database file output.

– Put runtime device options in CL commands or procedures.

– Use line spacing if desired.

– Do not define a cover page unless the output will be final summaries only.

– Do not use line wrapping.

– Do not use more than 55 characters for page heading or footing text.

– Use any report field name for a page text variable.
v Specify processing options.

– Do not request numeric overflow truncation.

– Do not request ignoring decimal data errors.

– Do not request other than ignoring substitution characters.

IBM Query for i5/OS and DB2 for i5/OS query management differences

Knowing some things about the differences between IBM Query for i5/OS and query management can

help you get better results from using information derived from IBM Query for i5/OS definition objects:

v The default printer form width used by query management is smaller than that used by IBM Query for

i5/OS. Parallel reports might be produced for a report that IBM Query for i5/OS kept on one printer

form width.

v Queries defined for files created by other queries might not be usable with files created by query

management from information derived from these other queries. This is especially likely if result fields

are included in the output file definitions.

v IBM Query for i5/OS cannot run a definition if an expression or value contains a decimal point

delimiter that is not recognized. Query management can run such a definition because valid decimal

point delimiters are converted to the delimiter indicated by the QDECFMT system value.

v Query management database processing truncates decimal positions after division of unscaled values.

For example, the value calculated for 2/3 is 0. For this reason, conversion processing makes sure each

numeric constant followed by a +, −, /, *, or (in an expression contains a decimal point delimiter. This

causes the size of the expression column to include 15 digits to the right of the decimal point.

Expressions involving division of unscaled numeric fields (no constants) will probably cause

unexpected results. Using a numeric result field name as the length or offset for the SUBSTR function

or as the argument for the DATE function might cause errors.

v Use of result field names or numbers with decimal point delimited where SQL expects positive whole

numbers may cause run-preventing errors.

v Query management database processing rules for double-byte character set (DBCS) data are different

from those applied for IBM Query for i5/OS. Use of concatenated strings to test other than open

strings should be avoided.

v Because form text that is too long is truncated, conversion processing compresses blank strings. Text

might still be lost because query management does not allow it to extend beyond limits determined by

column and summary value placement.

192 System i: Query Management Programming

v IBM Query for i5/OS uses any native formatting specified for date, time, and timestamp fields, but

query management uses a similar SQL format instead.

v If a QRYDFN object intends to produce summary-only output is suitably defined, query management

converts query information into an SQL SELECT statement with a GROUP BY clause and a field

selection list that contains grouping columns or column functions (for report break control fields and

any selected summary functions). If no report break is defined, only column functions are used. If a

QRYDFN object is not suitably defined for this mode of conversion, detail records will not be omitted.

SQL summary conversion will cause a run-preventing error if any of the following applies:

– Summary function other than COUNT for a result field with no file field reference

– MIN or MAX for a character field wider than SQL allows

– Total break fields larger than SQL allows

– Total break and summary columns larger than SQL allows
v Summary-only output from query management cannot be added to a file that was created by an earlier

release of IBM Query for i5/OS running the same QRYDFN object. This is because IBM Query for

i5/OS creates the file format with extra fields for holding level and overflow feedback information,

which query management does not provide or leave room for.

v The CCSID of the QRYDFN, not the CCSID of the job, becomes the CCSID of any retrieved objects.

Note: Refer to “Conversion details in query management” on page 197 for complete conversion details.

Creating DB2 for i5/OS query management objects from QRYDFN

objects

The following steps represent a typical way in which a QRYDFN object can be permanently converted to

a DB2 for i5/OS query management form object and DB2 for i5/OS query management query object:

1. Run the ANZQRY command on the selected QRYDFN. The messages produced give you suggestions

for adjusting the object before attempting to convert it to DB2 for i5/OS query management objects.

2. Create separate source file members-one for externalized queries and one for externalized forms.

3. Use the WRKQRY command to change and save the resolved QRYDFN object if there have been any

changes to the file definitions referred to. You can also use this command to change the object to

improve the conversion or to add functions tolerated but not supported by IBM Query for i5/OS.

4. Use CL or DB2 for i5/OS query management commands (RTVQMQRY or EXPORT QUERY, for

example) to extract the usable information.

5. Edit the externalized objects if you want to add functions not available through the IBM Query for

i5/OS prompted interface.

6. Use CL or DB2 for i5/OS query management commands (CRTQMQRY or IMPORT QUERY, for

example) to create DB2 for i5/OS query management objects.

Figure 59 illustrates how an IBM Query for i5/OS QRYDFN is converted for use as query management

query and query management form objects.

Figure 59. Conversion data flow

Chapter 12. Using IBM Query for i5/OS definition information in query management 193

Notes:

1. The form retrieved from a QRYDFN object may have blank column entries, causing warnings when

the form is used to create a QMFORM object. These warnings can be ignored.

2. The query source retrieved from a QRYDFN object is an SQL SELECT statement. The FROM clause

uses system naming conventions.

Figure 60 is an example of how you can use CL commands to convert IBM Query for i5/OS QRYDFN

objects to DB2 for i5/OS query management objects.

 See “Creating a CL program for permanent conversion of a QRYDFN object in query management” on

page 170 for another example of using CL commands to convert IBM Query for i5/OS QRYDFN objects

to DB2 for i5/OS query management objects.

Using the STRQMQRY command instead of the RUNQRY command in

query management

Both the Start Query Management Query (STRQMQRY) and the Run Query (RUNQRY) commands can

be used to produce a formatted report or database file output according to specifications in a previously

created QRYDFN object. The following examples demonstrate the minimum parameter requirements for

each command when the object to be run is a QRYDFN object. RUNQRY mylib/myqrydfn STRQMQRY

mylib/myqrydfn QMFORM(*QMQRY) ALWQRYDFN(*YES)

Note: Query management supports alternate collating sequence tables in a Query for i5/OS *QRYDFN

object for both the STRQMQRY and the RUNQRY commands.

Here are some reasons for using the STRQMQRY command:

v The appearance of many reports is improved if STRQMQRY is used.

v STRQMQRY provides less restrictive use of QRYDFN information. Unlike RUNQRY, STRQMQRY can

complete successfully using:

– A QRYDFN object saved with errors.

 Representative work...

 QRY1 in MYLIB saved as

 QRY1 in QTEMP on exit

 from option 2 (Change)

 |

 |

 |

 |

 |

Type command, press Enter. |

> crtsrcpf qtemp/qqmqrysrc 91 |

> crtsrcpf qtemp/qqmformsrc 162 |

> wrkqry __|

> rtvqmqry qtemp/qry1 qtemp/qqmqrysrc qry1 alwqrydfn(*yes)

> RTVQMQRY command completed using derived information.

> strseu qtemp/qqmqrysrc qry1________________________________

> crtqmqry qry1 qtemp/qqmqrysrc qry1 |

> rtvqmform qtemp/qry1 qtemp/qqmformsrc qry1 alwqrydfn(*yes) |

> RTVQMFORM command completed using derived information. |

> crtqmform qry1 qtemp/qqmformsrc qry1 |

===> |

 Representative editing...

 library/object names in

 FROM clause changed to

 database.object names

Figure 60. Sample CL command sequence for QRYDFN conversion

194 System i: Query Management Programming

– A dependent query in batch mode.

– Form and query information from separate objects.

– Form information derived from a QRYDFN object that includes selection of a file that is not defined

on the system.

– Query information derived from a QRYDFN object that includes a numeric constant with a decimal

point delimiter other than indicated by the QDECFMT system value.
v STRQMQRY may be faster for reporting summary-only information from large files. What makes this

possible is a conversion mode (SQL summary) that uses an SQL GROUP BY clause or column

functions in the derived query instead of summary function usages in the derived form. However, this

more efficient way of producing summary values and omitting detail records can only be used for a

QRYDFN with special characteristics. Refer to “IBM Query for i5/OS and DB2 for i5/OS query

management differences” on page 192.

Using STRQMQRY instead of RUNQRY may not achieve acceptable results, or certain actions may be

necessary to ensure a successful outcome. Consider the following items first:

v If STRQMQRY is used and there is a QMQRY or QMFORM object named myqrydfn in mylib library,

information for running the query or formatting the report is taken from that object instead of the

QRYDFN object unless *ONLY is specified as the ALWQRYDFN parameter value. If *YES has to be

specified to use the QRYDFN object with a query management object, one of the objects might have to

be renamed or moved.

v Because the query database does not support member specification, it may be necessary to use file

overrides to cause the intended member to be used instead of the *FIRST member (refer to “Override

considerations in query management” on page 165).

v Both commands have OUTFILE parameters, but STRQMQRY has no *RUNOPT default. This means

that if other than displayed output is intended, OUTFILE and related parameters must be specified for

STRQMQRY because default values from the QRYDFN object are not used.

v If the QRYDFN object is a dependent query, the dependent values must be set at run time. For the

RUNQRY command, the record selection (RCDSLT) parameter must be used. This requires interactive

mode, and causes the Select records prompt to be displayed so that the dependent values can be

specified. For STRQMQRY, the dependent value names are converted to global variables, which can be

set using the SETVAR parameter. The query can be run in batch mode if the SETVAR parameter is

used to specify values for all the global variables. In interactive mode, STRQMQRY uses INQUIRY

messages to prompt for any global variables not previously set by use of the SETVAR parameter, but

these messages have no information about the value expected. You may want to keep the printed

query definition on hand or write a simple STRQMQRY-based command that prompts for the value by

showing possible choices.

v RUNQRY processing makes dynamic adjustments for changes made to a file definition since the query

was saved; STRQMQRY processing does not. The QRYDFN object may need to be resaved before

STRQMQRY is used.

v If SQL conversion mode is used to omit detail records, any COUNT summaries are converted to

COUNT(*). Null values are counted. If you do not want null values to be counted, add a record

selection test that excludes the records with null values (ISNOT NULL).

v If you use a character column (field) for dates-instead a date data type- you might get different results

between:

– SQL using INSERT processing.

– SQL using INSERT processing with subselect.

When using INSERT processing without SELECT, the date format is taken from the user’s profile.

When using INSERT processing with SELECT, SQL assumes the value is for output and provides it to

query management in the SQL format (ddmmyyyy).

The ideal way to avoid this is to use date type columns for dates. When you must use character type

columns, make sure the user profile specifies the ddmmyyyy date format.

Chapter 12. Using IBM Query for i5/OS definition information in query management 195

v If the acceptability of the IBM Query for i5/OS result depends on any of the following, the query

management result is probably unacceptable. Parenthesized phrases indicate the potentially

unacceptable system action for each item:

– Dynamic resolution of field selections (The saved field list is used)

– Data from a file with multiple formats (No output is produced)

– Unmatched join with primary file (A matched join is performed)

– Matched join with primary file (A matched join is performed)

– Control of expression scale and precision (Defaults are used for calculations)

– More than 255 field selections and extra function selections (Only the first 255 selections are used)

– LIKE test of result expression with || or SUBSTR (No output is produced)

– Nonhexadecimal collating (No alternative collating is performed)

– Decimal position override with default numeric editing (The number of decimal positions is the

default value)

– Length override n to format n digits or characters (The number of digits or characters is the default

value)

– Length override with default numeric editing (The default length is used)

– Length override with default column heading (The default length is used)

– Edit override with default decimal positions (Column values are edited with 0 decimal positions)

– Date and time numeric editing override (The runtime default is used)

– Numeric editing override (edit code K is used)

– Multiple summary functions for field in same column (A separate column is added for each

summary function)

– Omission of break field column (The break field column is not omitted)

– Summary function for break field (A separate column is added to hold summary values)

– Break text for non-SQL summary when 1st or only column has summary (No break text is

displayed)

– Final text for non-SQL summary when 1st or only column has summary (No final text is displayed)

– Summary only output with multiple-level break summaries (Detail records are not omitted)

– Summary only output with break and final summaries (Detail records are not omitted)

– Summary only output with result field used for break control (Detail records are not omitted)

– Summary only output with count of non-null values for some field (Detail records are omitted, but

all records counted)

– Column function other than COUNT for result field literal (No output is produced for SQL

summary)

– MAX column function for character field wider than SQL allows (No output is produced for SQL

summary)

– MIN column function for character field wider than SQL allows (No output is produced for SQL

summary)

– Total break fields size for GROUP BY wider than SQL allows (No output is produced for SQL

summary)

– Total break and summary columns size wider than SQL allows (No output is produced for SQL

summary)

– Line wrapping (No line wrapping is used; parallel printer files are produced)

– Cover page text (No cover page is printed)

– Page text wider than 55 characters (Page text is truncated)

– Truncation of numeric overflow (Numeric overflow is rounded)

– Ignoring of decimal data error (Errors are not ignored; data is not corrected)

196 System i: Query Management Programming

– Treating character substitution as an error (Character substitution is ignored)

– Using object names to reference tables with names greater than 10 characters (The object name must

meet system naming conventions)
v You might get better results by considering the differences between IBM Query for i5/OS and DB2 for

i5/OS query management listed in “IBM Query for i5/OS and DB2 for i5/OS query management

differences” on page 192 and taking appropriate action. For example, because the defaults differ, you

might want to ensure that the printer form width used is the same as that used by IBM Query for

i5/OS.

Conversion details in query management

Figure 61 on page 198 shows the relationship between the Work with Query displays used to prompt for

query definition specifications and the corresponding sections of query management query and query

management form objects. Some Structured Query Language (SQL) functions that are supported by DB2

for i5/OS query management but not represented in Figure 61 (such as sublists and certain scalar

functions) are not available through the prompted interface, but are available in SQL.

Chapter 12. Using IBM Query for i5/OS definition information in query management 197

Work with Query Display Query Management Object

 Specify File Selections

 - File, Library SELECT FROM

 - Member N/A

 - Format N/A

 - File ID SELECT FROM

 SELECT list, ORDER BY

 (used as Field qualifier)

 Specify Type of Join

 - Type of join N/A

 Specify How to Join Files

 - Field__Test__Field SELECT WHERE

 Define Result Fields

 - Field__ (if no column heading) Column: Column heading, Width

 - Expression__ SELECT list, WHERE

 (substituted for Field)

 - Column heading__ (if no override) Column: Column heading, Width

 - Len__ Column: Edit, Width

 - Dec Column: Edit, Width

 Select and Sequence Fields

 - Seq__Field SELECT list

 Select Records

 - AND/OR__Field__Test__Value SELECT WHERE

 Select Sort Fields

 - Sort Prty__A/D__Field SELECT ORDER BY

 SELECT GROUP BY

 SELECT HAVING

 Select Collating Sequence

 - Collating sequence option N/A

 - Table, Library N/A

 Define Collating Sequence

 - Sequence__Char N/A

 Specify Report Column Formatting

 - Field__

 Column: Seq

 Column: Datatype

 - Column spacing__ Column: Indent

 - Column heading__ (override only) Column: Column heading, Width

 - Len__ (override only) Column: Usage, Edit, Width

 (0) (OMIT)

 - Dec__ (override only) Column: Edit, Width

 (#) (#)

 - Edit (override only) Column: Edit, Width

 (Untransformable numeric editing) (K)

 Define Numeric Field Editing

 - Edit option N/A

 Describe Numeric Field Editing

 - Decimal point, and so on Column: Edit, Width

 (Transformable description) (matched code)

Figure 61. Correlation between the Work with Query Display and DB2 for i5/OS Query Management Objects (Part 1 of

3)

198 System i: Query Management Programming

Work with Query Display Query Management Object

 Describe Date/Time Field Editing

 - Date/time separator N/A

 Specify Edit Code

 - Edit code, Optional modifier Column: Edit, Width

 (J) (K)

 (J$) (D)

 (M) (L)

 Specify Edit Word

 - Edit word N/A

 - Edit word for summary total N/A

 Select Report Summary Functions

 - Options__Field Column: Usage, Width

 (1=Total) (SUM)

 (2=Average) (AVERAGE)

 (3=Minimum) (MINIMUM)

 (4=Maximum) (MAXIMUM)

 (5=Count) (COUNT)

 (FIRST)

 (LAST)

 Define Report Breaks

 - Break level__Sort Prty__Field Column: Usage

 (1-6) (BREAK1-BREAK6)

 Format Report Break (level 0)

 Final: New page for final text

 - Suppress summaries Final: Put final summary at line

 (Y=Yes, N=No (if text present))(NONE, 2)

 Final: Blank lines before footing

 - Break text Final: Final footing text

 (1st and only line) (Line 1)

 (Lines 2-12)

 Format Report Break (level 1-6)

 - Skip to new page Break: New page for heading

 Break: Repeat column heading

 Break: Blank lines before heading

 Break: Blank lines after heading

 Break: New page for footing

 Break: Blank lines before footing

 Break: Blank lines after footing

 - Suppress summaries Break: Put summary at line

 (Y=Yes, N=No (if text present))(NONE, 2)

 Break: Break heading text

 - Break text Break: Break footing text

 (1st and only line) (Line 1)

 (Lines 2-5)

 Select Output Type and Output Form

 - Output type N/A

 - Form of output N/A

 - Line wrapping N/A

Figure 61. Correlation between the Work with Query Display and DB2 for i5/OS Query Management Objects (Part 2 of

3)

Chapter 12. Using IBM Query for i5/OS definition information in query management 199

The following actions resulting from conversion may be unexpected. You should be aware of these

actions to obtain the best results.

v Every character in an expression or test value is converted to uppercase unless it is in a string constant.

This includes the characters in a delimited name.

v SQL reserved words used as field names are placed in quotation marks in a derived SELECT

statement.

v The corresponding expression is substituted for each result field name that would otherwise appear in

a SELECT list or record selection test. Substitution is recursive because result field names can be used

in the expressions for other result fields. Column numbers are substituted for result field names in the

ORDER BY clause.

v If any join tests exist, they are used to start the WHERE clause, and any record selection tests are

added using the AND operator.

 Work with Query Display Query Management Object

 Define Printer Output

 - Printer N/A

 - Form size N/A

 - Start line N/A

 - End line N/A

 - Line spacing Options: Detail line spacing

 (1-3) (1-3)

 (4)

 Options: Outlining for break columns

 Options: Default break text

 Options: Column-wrapped lines kept

 Options: Column heading separators

 Options: Break summary separators

 Options: Final summary separators

 - Print definition N/A

 Define Spooled Output

 - Spool the output N/A

 - Form type N/A

 - Copies N/A

 - Hold N/A

 Specify Cover Page

 - Print cover page N/A

 - Cover page text (up to 5 lines) N/A

 Specify Page Headings and Footings

 - Print standard page headings

 Page: Blank lines before heading

 Page: Blank lines after heading

 - Page heading Page: Page heading text

 (lines 1-3) (Lines 1-3)

 (Lines 4-5)

 Page: Blank lines before footing

 Page: Blank lines after footing

 - Page footing Page: Page footing text

 (1st and only line) (Line 1)

 (Lines 2-5)

 Define Database File Output

 - File, Library, Member N/A

 - Data in file N/A

 - Authority (for new file) N/A

 - Text (for new file) N/A

 - Print definition N/A

 Specify Processing Options

 - Use rounding N/A

 - Ignore decimal data errors N/A

Figure 61. Correlation between the Work with Query Display and DB2 for i5/OS Query Management Objects (Part 3 of

3)

200 System i: Query Management Programming

v Dependent values in record selection tests are converted to global variables. For example, the

dependent value :t01.″collection″ is converted to &T01_COLLECTION.

v Valid decimal point delimiters are converted to the delimiter indicated by the Query Decimal Format

(QDECFMT) system value in numeric constants in a derived SELECT statement.

v Query management processing truncates decimal positions when dividing unscaled values. For

example, the value calculated for 2 divided by 3 is 0. For this reason, the decimal point delimiter

indicated by the QDECFMT system value is put at the end of every number without a decimal point

delimiter (and followed by a plus sign, a minus sign, an asterisk, a left bracket, or a slash) in

expressions in a derived SELECT statement.

v The Column heading field is left blank on a column with no summary function unless the column is a

result field or there is a column heading override for it. The field name is the default if no heading is

defined.

v Underline characters in the heading text are not replaced with substitute characters. A single line

heading such as 1_9_9_0 is converted with no changes and causes four lines of heading when the

derived form information is used.

The following actions may also occur:

– *NONE, designating no column heading, is converted to a single underline character; or, in a

summary function column, to the caption IBM Query for i5/OS uses for the values.

– A column heading string is built by removing leading and trailing blanks from each line, up to and

including the last nonblank line, and then connecting the resulting segments with single underline

characters.

– The heading for a column with a summary function is built by adding the column heading string to

the caption that IBM Query for i5/OS uses for the values. If the resulting string is longer than 62

characters, it is truncated.

– If no heading string exists to add to the summary function caption, the field name is used. Any

heading defined for the field as part of a file definition is ignored.
v The character part of the Edit value is left blank if any of the following occur:

– The column holds only COUNT summary function values.

– No size override exists, unless the column is a result field for which a size has been specified.

– No override editing is defined, the column is not a result field, and there is a numeric decimal

positions override.
v DB2 for i5/OS query management uses the C edit code if the decimal positions override indicates a

character, date, time, or timestamp field. The K edit code is used for a numeric field if a closer match

to a query management CPI Query edit code cannot be determined for the edit override, or if no

override exists and the column is for a result field.

v Only the type of override editing indicated by the Edit option choice is considered.

v The effect of system defaults on RPG edit code editing is disregarded. The J, J with currency symbol,

and M edit codes are always converted to K, D, and L, respectively.

v Edit description choices not involved in the actual editing (a left or right currency symbol when no

currency symbols are to be used, for example) are ignored when comparisons are made.

v The numeric part of the Edit value is left blank if the character part is blank or C. This value is also left

blank if the number of decimal positions to be used cannot be determined from a decimal positions

value saved as an override (with a nonzero length override) or as part of the definition of a result field.

v The Width value for a column is left blank unless the information saved in the QRYDFN object

specifies the width requirements for everything that appears in the column. A column formatting

length override can influence the Width, but only determines the number of digits or decimal positions

formatted when nothing else in the column (such as a heading segment or count summary value

9,999,999) is wider than the edited data and the override length is smaller than the data width

assumed by database processing.

v Page, break, and final text are adjusted in the following ways:

– Strings of consecutive blanks are compressed to single blanks.

Chapter 12. Using IBM Query for i5/OS definition information in query management 201

– Fields referencing insert variables are converted to column referencing variables and special

variables (such as &time, &date, &page) are converted to all uppercase characters. Strings starting

with an ampersand (&) are recognized as text insert variables only if the character after the & is not

a blank or a numeric digit, and if the string is ended by one of the following characters:

- Blank

- Slash

- Colon

- Dash

- Ampersand

- Underscore

- DBCS shift-out character

All selected fields are considered (in report order) when converting a field reference to a column

reference.

– If the resolved text exceeds 55 characters, it is truncated at the first blank or ampersand of the first

56 positions. If no blank or ampersand is found, the text is not used.

– DBCS strings left open due to truncation are closed.
v The CCSID of the query definition and the formatting attributes of any literals in expressions or record

selections are passed along to DB2 for i5/OS query management. This information does not come from

the job under which the conversion is performed.

202 System i: Query Management Programming

Chapter 13. Control language interface in query management

You can use query-management management functions through the control language (CL) to create

simple applications for report generation. By defining a command, a control language (CL) program, a

query, and a form, you can prompt the user for any amount of information required to generate a

meaningful report.

Creating QMQRY and QMFORM objects in query management

You can define a query (QMQRY object) using an SQL statement. Figure 62 is an example of a printed

query called SALARYQ2.

Note: After a *QMQRY object is defined to use a user-defined sort sequence table, changes to the sort

sequence table only take effect when the query is run if the query changed. You cannot PRINT or

EXPORT the contents of the sort sequence table associated with a *QMQRY object.

For more information about creating QMQRY objects, see “Creating queries in query management” on

page 9.

You can define a form (QMFORM object) to specify the information to be included in the report

generated.

For more information about creating QMFORM objects, see “Creating forms in query management” on

page 63.

Sample CL program for numeric variables in query management

The CL program in Figure 63 uses the query shown in Figure 62.

 DB2 for i5/OS Query Management

 Query : SALARYQ2

 Library : EXAMPLE

 Sort sequence : Sort sequence table

 Sort sequence table . . : QASCII

 Library : QSYS

 Language identifier : ENU

 Text : Sales query

 Text : TEST QUERY

 SEQNBR |...+....1....+....2....+....3....+....4....+....5....+....6....

 000001 SELECT DEPT,NAME,ID,JOB,YEARS,SALARY,COMM

 000002 FROM TESTDATA/STAFF

 000003 WHERE DEPT = &COND1 AND SALARY < &COND2

 000004 ORDER BY DEPT,SALARY

 * * * * * END OF SOURCE * * *

Figure 62. Test query SELECT statement

© Copyright IBM Corp. 1998, 2008 203

Note: Using STRQMQRY and the CL command processor with multiple variables and long SQL

statements within STRQMQRY can sometimes cause unexpected results. Long SQL statements can

be broken into 55 character segments and saved into multiple variables. However, you should

make sure that these segments break on a character. If the statement breaks on a blank, the CL

Command Processor will truncate the blanks. When the variables are concatenated, the truncated

spaces are not replaced, which can cause the SQL statement to fail. However, the CL Command

Process will leave blanks that occur at the beginning of a segment.

Figure 64 shows the command to run this example CL program.

 When you enter the command EXAMPLE/DEPTREP and press F4 to prompt, the following display appears:

 SEU SOURCE LISTING

 SOURCE FILE EXAMPLE/SOURCE

 MEMBER CLPGM

 SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...

 100 PGM PARM(&VAR1 &VAR2 &VAR3 &VAR4)

 200 DCL &VAR1 *CHAR LEN(6)

 300 DCL &VAR2 *CHAR LEN(6)

 400 DCL &VAR3 *CHAR LEN(6)

 500 DCL &VAR4 *CHAR LEN(10)

 600 STRQMQRY QMQRY(EXAMPLE/SALARYQ2) QMFORM(EXAMPLE/&VAR4) +

 700 OUTPUT(&VAR3) +

 800 SETVAR((COND1 &VAR1) (COND2 &VAR2))

 900 ENDPGM

 * * * * E N D O F S O U R C E * * * *

Figure 63. CL program source file

 SEU SOURCE LISTING

 SOURCE FILE EXAMPLE/SOURCE

 MEMBER DEPTREP1

 SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...

 200 CMD PROMPT(’Department Report’)

 300 PARM KWD(VAR1) TYPE(*CHAR) LEN(6) RSTD(*YES) +

 301 DFT(10) VALUES(10 20 30 40 50) +

 400 PROMPT(’Department to report on’)

 500 PARM KWD(VAR2) TYPE(*CHAR) LEN(6) DFT(100000) +

 600 PROMPT(’With salary less than’)

 700 PARM KWD(VAR3) TYPE(*CHAR) LEN(6) RSTD(*YES) +

 701 DFT(*) VALUES(* *PRINT) PROMPT(’Output +

 800 Loc. (*/*PRINT)’)

 900 PARM KWD(VAR4) TYPE(*CHAR) LEN(10) RSTD(*YES) +

 901 DFT(SALARYF2) VALUES(BYDEPT BYDIVISION +

 1000 SALARYF2) PROMPT(’Report name’)

 * * * * E N D O F S O U R C E * * * *

Figure 64. CL command source file

204 System i: Query Management Programming

Department Report (DEPTREP)

 Type choices, press Enter.

 Department to report on 10 10, 20, 30, 40, 50

 With salary less than 100000 Character value

 Output Loc. (*/*PRINT) *PRINT *, *PRINT

 Report name SALARYF2 BYDEPT, BYDIVISION, SALARYF2

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Press the Enter key to use the default values for this job.

The report shown in Figure 65 is displayed with the department averages for salary and years of

experience for department 10.

Creating QMQRY and QMFORM objects for character variables in

query management

You define the query (QMQRY object) the same way as you do an object with numeric variables except

for one thing. More quotes are required for character variables. Figure 66 is an example of a printed

query called SALARYQ3.

 DEPT NAME ID JOB YEARS SALARY COMM

--------- --------- --------- ----- --------- ----------- ---------

 10 DANIELS 240 MGR 5 19,260.25 .00

 LU 210 MGR 10 20,010.00 .00

 JONES 260 MGR 12 21,234.00 .00

 MOLINARE 160 MGR 7 22,959.20 .00

 --------- -----------

 Dept Avg: 9 20,865.86

Figure 65. CL program report example

 DB2 for i5/OS Query Management

 Query : SALARYQ3

 Library : EXAMPLE

 Text : TEST QUERY

 SEQNBR |...+....1....+....2....+....3....+....4....+....5....+....6....

 000001 SELECT JOB,DEPT,NAME,ID,YEARS,SALARY,COMM

 000002 FROM TESTDATA/STAFF

 000003 WHERE JOB = &COND1 AND SALARY < &COND2

 000004 ORDER BY JOB,SALARY

 * * * * * END OF SOURCE * * *

Figure 66. Test query SELECT statement

Chapter 13. Control language interface in query management 205

Note: After a *QMQRY object is defined to use a user-defined sort sequence table, changes to the table

only take effect when the query is run if the query changed. You cannot PRINT or EXPORT the

contents of the sort sequence table associated with a *QMQRY object.

For more information about creating QMQRY objects, see “Creating queries in query management” on

page 9.

You can define a form (QMFORM object) to specify the information to be included in the report

generated.

For more information about creating QMFORM objects, see “Creating forms in query management” on

page 63.

Sample CL program for character variables in query management

The CL program in Figure 67 uses the query shown in Figure 66.

 Figure 68 shows the command to run this example CL program.

 When you enter the command EXAMPLE/DEPTREP and press F4 to prompt, the following display appears:

 SEU SOURCE LISTING

 SOURCE FILE EXAMPLE/SOURCE

 MEMBER CLPGM

 SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...

 100 PGM PARM(&VAR1 &VAR2 &VAR3 &VAR4)

 200 DCL &VAR1 *CHAR LEN(6)

 300 DCL &VAR2 *CHAR LEN(6)

 400 DCL &VAR3 *CHAR LEN(6)

 500 DCL &VAR4 *CHAR LEN(10)

 600 DCL &CHARJOB *CHAR LEN(10)

 700 CHGVAR VAR(&CHARJOB) VALUE(’’’’ *TCAT &VAR1 *TCAT ’’’’)

 800 STRQMQRY QMQRY(EXAMPLE/SALARYQ3) QMFORM(EXAMPLE/&VAR4) +

 900 OUTPUT(&VAR3) +

 1000 SETVAR((COND1 &CHARJOB) (COND2 &VAR2))

 1100 ENDPGM

 * * * * E N D O F S O U R C E * * * *

Figure 67. CL program source file

 SEU SOURCE LISTING

 SOURCE FILE EXAMPLE/SOURCE

 MEMBER JOBREP1

 SEQNBR*...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...

 200 CMD PROMPT(’Job Report’)

 300 PARM KWD(VAR1) TYPE(*CHAR) LEN(6) RSTD(*YES) +

 301 DFT(MGR) VALUES(MGR SALES CLERK) +

 400 PROMPT(’Job category to report on’)

 500 PARM KWD(VAR2) TYPE(*CHAR) LEN(6) DFT(100000) +

 600 PROMPT(’With salary less than’)

 700 PARM KWD(VAR3) TYPE(*CHAR) LEN(6) RSTD(*YES) +

 701 DFT(*) VALUES(* *PRINT) PROMPT(’Output +

 800 Loc. (*/*PRINT)’)

 900 PARM KWD(VAR4) TYPE(*CHAR) LEN(10) RSTD(*YES) +

 901 DFT(SALARYF3) VALUES(BYJOB BYDIVISION +

 1000 SALARYF3) PROMPT(’Report name’)

 * * * * E N D O F S O U R C E * * * *

Figure 68. CL command source file

206 System i: Query Management Programming

Job Report (JOBREP)

 Type choices, press Enter.

 Job category to report on . . . MGR MGR, SALES, CLERK

 With salary less than 100000 Character value

 Output Loc. (*/*PRINT) *PRINT *, *PRINT

 Report name SALARYF2 BYJOB, BYDIVISION, SALARYF2

 Bottom

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

Press the Enter key to use the default values for this job.

The report shown in Figure 69 is displayed with the department values for salary and years of experience

for job MGR.

 COMM

JOB DEPT NAME ID YEARS SALARY COMM ---------

----- ------- --------- ------- ------ ----------- -------- .00

MGR 38 MARENGHI 30 5 17,506.75 .00

 42 PLOTZ 100 7 18,352.80 .00

 20 SANDERS 10 7 18,357.50 .00

 66 LEA 270 9 18,555.50 .00

 10 DANIELS 240 5 19,260.25 .00

 84 QUILL 290 10 19,818.00 .00

 10 LU 210 10 20,010.00 .00

 15 HANES 50 10 20,659.80 .00

 51 FRAYE 140 6 21,150.00 .00

 10 JONES 260 12 21,234.00 .00

 10 MOLINARE 160 7 22,959.20 .00

 ------ -----------

 Job Avg: 8 19,805.80

Figure 69. CL program report example

Chapter 13. Control language interface in query management 207

208 System i: Query Management Programming

Appendix A. DBCS data in query management

This appendix describes the use of double-byte character set (DBCS) data with DB2 for i5/OS query

management. Using DBCS data is different in some ways from using single-byte character set (SBCS)

data. In order to use DBCS data, you must have DBCS-capable hardware and software.

What is DBCS data in query management?

A double-byte character set is a set of characters in which each character is represented by two bytes.

Languages such as Japanese, Chinese, and Korean, which contain more symbols than can be represented

by one byte (256 code points), require double-byte character sets.

Character sets that use one byte to represent each character are called single-byte character sets.

Languages such as English, German, and French have single-byte character sets. In some cases, Japanese

Katakana can also be represented by a single-byte character set, because the characters can be represented

internally in single bytes.

References made in this chapter to mixed data mean that strings of both single-byte and double-byte data

are contained together in one data field.

There are two types of DBCS data, bracketed DBCS and graphic-DBCS:

Bracketed-DBCS data:

Bracketed-DBCS data is DBCS data that, when stored in the database, is preceded by a one-byte

shift-out (SO) character (hex’0E’) and is followed by a one-byte shift-in (SI) character (hex’0F’).

The SO character indicates the beginning of DBCS data and the SI character indicates the end of

DBCS data. When data is mixed SBCS and DBCS, the DBCS data in the mixed string is preceded

by a SO character and followed by a SI character.

Graphic-DBCS data:

Graphic-DBCS data is DBCS data that is stored in the database without being preceded and

followed by SO and SI characters. Graphic-DBCS data can be fixed length or variable length.

DB2 for i5/OS maintains bracketed-DBCS data with a length specified as the number of bytes, including

SO and SI characters. The maximum length of bracketed-DBCS data that can be stored in the database is

32 766.

The database maintains graphic-DBCS data with a length specified as the number of characters; therefore,

the number of bytes used in the database for a graphic field is twice the number of characters. The

maximum length of graphic-DBCS data that can be stored in the database is 16 383. For variable-length

graphic-DBCS data, the maximum is 16 370.

Displayed and printed DBCS data in query management

You can display any DB2 for i5/OS query management object that contains DBCS data whether you have

a DBCS-capable display or not.

When displayed or printed, DBCS fields are surrounded by SO and SI characters. This is done whether or

not the job is DBCS capable.

The default report width for bracketed-DBCS data is the length of the data in bytes, including SO and SI

characters. The default report width for graphic-DBCS data is twice the number of characters plus 2 (for

the SO and SI characters).

© Copyright IBM Corp. 1998, 2008 209

DB2 for i5/OS query management positions the SO character as the first character in the column. The SO

character is not put in the indent area (see INDENT under “Using DBCS in the FORM in query

management” on page 212). Although this causes a misalignment when SBCS column headings are used,

the alignment is correct with DBCS column headings. Figure 70 shows a report segment using DBCS

data. The <> characters represent the SO and SI characters; these characters appear as blanks on the

printed or displayed report. This example uses DBCS alphabetic characters for the data. The first column

has a DBCS column heading and the second column has an SBCS column heading.

 If a printed or displayed report results in a DBCS data type field being split between print files or display

panels, there are some differences in the report, depending on whether or not the job is DBCS capable. If

the job is DBCS capable, SO and SI characters are added around the column segments where they are

split. Figure 71 shows how a DBCS column is split between print pages when the job is DBCS capable. If

the job is not DBCS capable, no SO or SI characters are added around the split column segments. In

Figure 71, the report width is 46 and the PRINT REPORT width is 24. Figure 72 shows how a DBCS

column is split between print pages when the job is not DBCS capable. The # character in the report

represents one half of a DBCS character.

Data types used with DBCS data in query management

You can save DBCS data in your database if you define the columns in which you save the data as one of

two basic types, CHARACTER or GRAPHIC:

v Bracketed-DBCS data must be put into CHARACTER data type columns. Bracketed-DBCS data can be

mixed with SBCS data. Bracketed-DBCS constants (see the following note) must also be put into

CHARACTER data type columns. Bracketed-DBCS constants consist of bracketed-DBCS data preceded

and followed by the single-byte apostrophe, for example:

’<D1D2D3>’

 <E M P L O Y E E >

 <N A M E > JOB

 ---------------------------- -------------

 <J O H N S H E R M A N > <M G R >

 <B O B S C H R A M S K I > <C L E R K >

 <J U D I T H B A R T A > <S A L E S >

Figure 70. Example default report for DBCS data

 SPOOL FILE 1: |SPOOL FILE 2:

 1(1) | 1(2)

 |

 <E M P L O Y E E> |

 <N A M E> | JOB

 ----------------------- | --------- --------------

 <J O H N S H E R M > | <A N > <M G R >

 <B O B S C H R A M > | <S K I > <C L E R K >

 <J U D I T H B A R > | <T A > <S A L E S >

 <K A R E N R A N D > | < > <S A L E S >

Figure 71. Example printed report split when DBCS capable

 SPOOL FILE 1: |SPOOL FILE 2:

 1(1) | 1(2)

 |

 <E M P L O Y E E> |

 <N A M E> | JOB

 ----------------------- | ------- --------------

 <J O H N S H E R M # | #N > <M G R >

 <B O B S C H R A M # | #K I > <C L E R K >

 <J U D I T H B A R # | #A > <S A L E S >

 <K A R E N R A N D | > <S A L E S >

Figure 72. Example printed report split when not DBCS capable

210 System i: Query Management Programming

where D1, D2, and D3 represent double-byte characters. All entries in the column must have the same

length.

v Graphic-DBCS data strings must be put into columns defined as GRAPHIC. Graphic-DBCS constants

(see the following note) must also be put into GRAPHIC data type columns. Graphic-DBCS constants

consist of bracketed-DBCS data preceded and followed by the single-byte apostrophe and preceded by

a G, for example:

G’<D1D2D3>’

Graphic-DBCS data cannot be mixed with SBCS data. Either fixed-length or variable-length

graphic-DBCS data can be put into columns defined as graphic.

Note: The constants described above are those that are used in the SQL statement when selecting

derived columns. Derived columns are columns that are defined as an SQL expression, for

example:

 SELECT G’<A B C >’ || Column1, ’<D B C S >’ FROM Tablename

For additional information on the maximum lengths of these columns, refer to the SQL reference.

Using DBCS data in DB2 for i5/OS query management

The following sections explain how using DBCS data in DB2 for i5/OS query management is different

from using SBCS data.

“Using DBCS data in input fields in query management”

“Using DBCS data in queries in query management”

“Using DBCS in the FORM in query management” on page 212

“Saving DBCS data in query management” on page 214

“Using DBCS global variables in DB2 for i5/OS query management commands” on page 215

“Exporting DBCS data in query management” on page 216

“Importing DBCS data in query management” on page 216

“Printing DBCS reports in query management” on page 216

Using DBCS data in input fields in query management

All DB2 for i5/OS query management input fields, except names, allow DBCS data.

Using DBCS data in queries in query management

The following can be in bracketed-DBCS, mixed SBCS and DBCS, or graphic-DBCS:

v Substitution values

v Delimited strings in character data type fields

v Comments

Graphic data type fields can only contain graphic-DBCS data.

SQL keywords must be in English.

Appendix A. DBCS data in query management 211

Using DBCS in the FORM in query management

The FORM object contains specifications for formatting the data that results from running a query with a

select statement. This topic describes how the FORM specifications work with DBCS data.

Bracketed-DBCS data, mixed SBCS and DBCS data, and graphic-DBCS data can be used in the FORM

panels as:

v Break text

v Page text

v Final text

The FORM specifications work as follows with DBCS data:

USAGE

Specifies how to use a column. FORM usages must be SBCS characters.

INDENT

The number of blank spaces to the left of a column; this field is used to separate a column either

from the column before it, or from the left margin. See “Displayed and printed DBCS data in

query management” on page 209 for special considerations because of the DBCS SO and SI

characters that appear as blank spaces on the report.

WIDTH

Specifies how wide you want the column to be. If the data type for the columns is GRAPHIC, the

COLUMNS.WIDTH is interpreted as the number of graphic-DBCS characters. For any other data

type, it is interpreted as the number of bytes.

 If the column contains bracketed-DBCS data, the width in bytes equals the value for

COLUMNS.WIDTH plus 2 (for the SO and SI characters). The maximum column width for

bracketed-DBCS data is 32 766 bytes. You must allow for the extra positions in the report for SO

and SI characters or undisplayable data can result. If the WIDTH is less than 4 spaces (the

minimum space required to display a single DBCS character), the column is filled with asterisks

(***).

 If the column contains graphic data, the width in bytes is twice the COLUMNS.WIDTH plus 2

(for the SO and SI characters that are added when graphic-DBCS data is displayed or printed).

The maximum WIDTH that can be specified in the FORM for graphic-DBCS data is 16 383

characters (16 370 for variable-length graphic-DBCS data). If GRAPHIC is specified for

COLUMNS.DATATYPE, you do not need to add extra width to accommodate the SO and SI

characters that are placed around the data, because this is handled by DB2 for i5/OS query

management.

Note: Because DB2 for i5/OS query management does not require COLUMNS.DATATYPE in the

form, the same form can be applied to SBCS data or to DBCS data. The width of the

report, in bytes, is different for each of these cases.

DATATYPE

Specifies the type of data that is contained in the corresponding column in the queried table.

COLUMNS.DATATYPE for bracketed-DBCS data must be CHARACTER. COLUMNS.DATATYPE

for graphic-DBCS data must be GRAPHIC.

EDIT Edit codes determine how values in a column are punctuated, if at all.

 These codes must be entered on the form in single-byte characters.

v C is the edit code for character data type columns. It makes no change in the display of a

value.

v CW is the edit code for character data columns to be wrapped. It makes no change in the

display of a value. But if the value cannot fit on one line in the column, the text wraps

212 System i: Query Management Programming

according to the width of the column. That is, instead of cutting off the data at the end of the

column, as much data as possible is put on a line in the column, and then the data continues

wrapping on the next line.

v CT is the edit code for columns of character data to be wrapped according to the column text.

It makes no change in the display of a value, but if the value cannot fit on one line in the

column, the column wraps according to the text in the column. That is, instead of cutting off

the data at the end of the column, as much data as possible is fitted into a line; then the line

interrupts at a single-byte blank and the data continues wrapping on the next line. If a string

of data is too long to fit in the column and does not contain a single-byte blank, the data

wraps by width until a single-byte blank is found.

When you use the CT edit code for a column that contains mixed DBCS and SBCS data, the

minimum width for the column is four (4).

v G is the edit code for columns of data defined as graphic type. It makes no change in the

display of a value.

v GW is the edit code for columns of graphic data that you want wrapped. It makes no change

in the display of a value, but if the value cannot fit on one line in the column, DB2 for i5/OS

query management wraps the text according to the width of the column. That is, instead of

truncating the data at the end of the column, DB2 for i5/OS query management puts as much

data as it can on a line in the column and continues wrapping the remaining data on the next

line.

The sample report in Figure 73 on page 214 shows the results of displaying graphic-DBCS data using a

form that has a COLUMNS.WIDTH of 1, 2, 3 and 4 for the first 4 columns. The fifth column describes the

data. The column headings are SBCS data. The COLUMNS.EDIT for the first four columns is GW. The

SQL statement that was run was: SELECT COL1, COL1, COL1, COL1, Desc FROM SAMPLE. The column

named COL1 is defined as VARGRAPHIC(10).

Appendix A. DBCS data in query management 213

How data truncation is handled in query management

DB2 for i5/OS query management truncates displayed DBCS data at a field or screen boundary in a way

that avoids splitting DBCS characters. Paging is necessary to view the characters on the truncated lines.

Shift-in and shift-out characters and column widths are contained in the width or the column and are not

placed in the indent or margins of the report.

Saving DBCS data in query management

DB2 for i5/OS query management supports the following ways of saving DBCS data that has been

selected by means of a query:

1. DB2 for i5/OS query management command: SAVE DATA AS

 1 22 333 4444 Description

 ---- ------ ------- ---------- -----------------------------

 <> <> <> <> LENGTH(COL1)=0

 <1 > <1 > <1 > <1 > LENGTH(COL1)=1

 <2 > <2 2 > <2 2 > <2 2 > LENGTH(COL1)=2

 <2 >

 <3 > <3 3 > <3 3 3 > <3 3 3 > LENGTH(COL1)=3

 <3 > <3 >

 <3 >

 <4 > <4 4 > <4 4 4 > <4 4 4 4 > LENGTH(COL1)=4

 <4 > <4 4 > <4 >

 <4 >

 <4 >

 <5 > <5 5 > <5 5 5 > <5 5 5 5 > LENGTH(COL1)=5

 <5 > <5 5 > <5 5 > <5 >

 <5 > <5 >

 <5 >

 <5 >

 <6 > <6 6 > <6 6 6 > <6 6 6 6 > LENGTH(COL1)=6

 <6 > <6 6 > <6 6 6 > <6 6 >

 <6 > <6 6 >

 <6 >

 <6 >

 <6 >

 <7 > <7 7 > <7 7 7 > <7 7 7 7 > LENGTH(COL1)=7

 <7 > <7 7 > <7 7 7 > <7 7 7 >

 <7 > <7 7 > <7 >

 <7 > <7 >

 <7 >

 <7 >

 <7 >

 <8 > <8 8 > <8 8 8 > <8 8 8 8 > LENGTH(COL1)=8

 <8 > <8 8 > <8 8 8 > <8 8 8 8 >

 <8 > <8 8 > <8 8 >

 <8 > <8 8 >

 <8 >

 <8 >

 <8 >

 <8 >

 <9 > <9 9 > <9 9 9 > <9 9 9 9 > LENGTH(COL1)=9

 <9 > <9 9 > <9 9 9 > <9 9 9 9 >

 <9 > <9 9 > <9 9 9 > <9 >

 <9 > <9 9 >

 <9 > <9 >

 <9 >

 <9 >

 <9 >

 <9 >

Figure 73. Report using GW with GRAPHIC data

214 System i: Query Management Programming

2. CL command: STRQMQRY OUTPUT(*OUTFILE)

The following rules apply when using a SAVE DATA AS command to save DBCS data:

v DBCS-either columns can be saved over DBCS-either and DBCS-open columns.

v DBCS-either columns can be saved over DBCS-only columns only if all the fields in the column are

bracketed-DBCS strings.

v DBCS-either columns can be saved over CHAR (non-DBCS) columns only if none of the fields in the

column are bracketed-DBCS fields.

v DBCS-only columns can be saved over DBCS-only, DBCS-open and DBCS-either columns.

v DBCS-only columns cannot be saved over CHAR columns.

v DBCS-open columns can be saved over DBCS-open columns.

v DBCS-open columns can be saved over DBCS-only columns only if all the fields in the column are

bracketed-DBCS fields.

v DBCS-open columns can be saved over DBCS-either columns only if all the fields in the column are

either bracketed-DBCS fields or SBCS fields. No mixed strings are allowed, for example, a column

containing a field with the value X’F10EF1F10F’ could not be saved over a DBCS-either column (0E

and 0F are the DBCS shift-out and shift-in bracket characters).

v CHAR fields can be saved over DBCS-open and DBCS-either fields.

v CHAR fields cannot be saved over DBCS-only fields.

v Graphic-DBCS data can only be saved over graphic-DBCS data. No other type of data can be saved

over graphic-DBCS data.

v The length rules for fixed-length and variable-length graphic-DBCS data types are the same as the

length rules for fixed-length and variable-length character data types, but when determining valid

combinations, you must take into account that the length of graphic-DBCS data is counted in

characters and the length of character data is counted in bytes.

– Fixed-length graphic-DBCS data can be saved over fixed-length graphic-DBCS data if the defined

length of the source is less than or equal to the defined length of the target.

– Fixed-length graphic-DBCS data can be saved over variable-length graphic-DBCS data if the defined

length of the source is less than or equal to the defined length of the target.

– Variable-length graphic-DBCS data can be saved over variable-length graphic-DBCS data if the

length of the data in the source is less than or equal to the defined length of the target.

– Variable-length graphic-DBCS data can be saved over fixed-length graphic-DBCS data if the length

of the data in the source is less than or equal to the defined length of the target.

Using DBCS global variables in DB2 for i5/OS query management

commands

DB2 for i5/OS query management global variables can only be of types CHAR and INTEGER. DB2 for

i5/OS query management does not support a global variable of type GRAPHIC. If you need to substitute

a graphic-DBCS constant into the SQL statement, the global variable that is used should be set to type

CHAR. Because DB2 for i5/OS SQL only allows graphic-DBCS constants in an SQL statement if the

constant is in the form:

 G’<A B C D E >’

you must be sure that the character string:

 "G’<A B C D E >’"

is set in the variable pool. For example, if the query to be run is:

 SELECT * FROM Table WHERE (ColumnName=&ComparisonValue

and if the column called ColumnName is a GRAPHIC type, the variable value for the global variable

ComparisonValue should be a graphic-DBCS constant. The following example shows how the SET

Appendix A. DBCS data in query management 215

GLOBAL command might appear in the query procedure. Each SET GLOBAL command is functionally

identical and is setting the global variable so that the SQL statement is built correctly.

 " SET GLOBAL (ComparisonValue=G’<A B C D E >’ "

 " SET GLOBAL (ComparisonValue=""G’<A B C D E >’"" "

 ’ SET GLOBAL (ComparisonValue="G’<A B C D E >’" ’

In all three of these cases, the SQL statement to be run would be:

 SELECT * FROM Table WHERE (ColumnName=G’<A B C D E >’

See Appendix C, “Use of quotation marks and apostrophes when setting global variables in query

management” for additional examples of setting global variables.

CL Commands

The following example shows how the STRQMQRY SETVAR() would be coded to successfully run the

query above.

STRQMQRY QMQRY(QueryName) SETVAR((’ComparisonValue’ ’G’<A B C D E >’’)

Exporting DBCS data in query management

Data defined as graphic and variable graphic can be exported.

The data type codes for the header records of exported data are:

 464 for VARGRAPHIC

 468 for GRAPHIC.

Data defined as character that contains bracketed-DBCS data can be exported. Data defined as graphic

can be exported.

The column width of exported data is the number of DBCS characters in the data, which is half the

number of bytes used to store the data. Column data is stored in the data record exactly as it comes from

the database.

Importing DBCS data in query management

DBCS data can be imported in queries, procedures, and forms. When importing DBCS queries and

procedures this way, ensure that the record length does not exceed 79 bytes.

Printing DBCS reports in query management

If you are using DBCS data and the page splits, printing resumes on the second and subsequent pages of

the report, at the fourth byte position from the left side of the page.

216 System i: Query Management Programming

Appendix B. Example of DB2 for i5/OS query management

interface

This appendix gives an example of how you can use the query management callable interface to create a

report. Sample RPG and COBOL programs are provided to show how to create a procedure or program.

You can work with this example on your system to assist in learning to use the DB2 for i5/OS query

management callable interface. See Chapter 13, “Control language interface in query management” for an

example of the CL interface to query management functions.

Producing a report in query management

Figure 74 illustrates using query management to select data and to produce a report using predefined

query management form (QMFORM) and query management query (QMQRY) objects. Run the SAMP1

program to produce the report.

 In this example, the database file WKPAY exists on the system and contains the following information:

employee name, employee number, weekly hours worked, and the hourly rate of pay. Before running the

SAMP1 program, create a QMQRY object and a QMFORM object on the system. Do this by first creating

the source for the two objects in Query Management Query Source (QMQRYSRC) and Query

Management Form Source (QMFORMSRC) files respectively. Then use the Create Query Management

Query (CRTQMQRY) and Create Query Management Form (CRTQMFORM) commands to import them

to QMQRY and QMFORM formats. Figure 75 on page 218 shows the data description specifications

(DDS) for the WKPAY file.

Figure 74. Overview of using query management to produce a report

© Copyright IBM Corp. 1998, 2008 217

Figure 76 shows the query used in the example:

Note: The maximum length of this source file is 91 characters (with line number equal to 6 characters,

date equal to 6 characters, and data equal to 79 characters). The SQL statement is organized to

conform to i5/OS standards, since the option to use *SYS is specified in the START query

command issued by the sample program.

Figure 77 shows the results of running the SAMP1 program.

Examples: Programs in query management

The example programs provided in RPG (Figure 78 on page 219) and COBOL (Figure 79 on page 221)

perform the same functions. The programs process the WKPAY file by reading one record at a time,

calculating the weekly pay amount, and then updating the file with the calculated information. When all

the records are updated, query management is started with a call to the interface program QQXMAIN

and passes the START command and the communications area. The START command specifies that the

interface session uses system naming conventions (*SYS) and not the default (*SAA).

Perform the query by calling the callable interface and passing the RUN command. Print the results using

the PRINT command. Use the EXIT command to end the interface, and end the program with control

returning to the calling program.

When passing query management data to the interface, it is necessary to pass the lengths of commands

and parameters in integer (binary) format. Structures have been set up in the program to allow data to be

passed in this format.

A module containing the communications area is included in the program during compilation. Use this to

communicate the status of operations between query management and the user program. The interface

 *

 * weekly payroll details

 *

 A UNIQUE

 A R PAYR TEXT(’Weekly Pay Record’)

 A EMPNO 5 COLHDG(’Employee’ ’Number’)

 A NAME 20 COLHDG(’Employee’ ’Name’)

 A HOURS 5S 2 COLHDG(’Hours’ ’Worked’)

 A RATE 5S 2 COLHDG(’Hourly’ ’Rate’)

 A WKAMT 5S 2 COLHDG(’Weekly’ ’Pay’)

 A K EMPNO

Figure 75. Data description specifications for WKPAY file

 SELECT NAME, HOURS, RATE, WKAMT FROM BPLIB/WKPAY

 ORDER BY NAME

Figure 76. Query source SELECT statement

DATE: 11/21/89 WEEKLY PAY REPORT PAGE: 1

 HOURS HOURLY PAY

EMPLOYEE NAME WORKED RATE AMOUNT

ANDERSON, W 38.50 6.23 100.00

COLLINS, R 41.50 5.40 400.00

GREEN, C 40.00 7.10 300.00

SMITH, T 42.00 5.30 200.00

 TOTAL 1,000.00

Figure 77. Report results for SAMP1

218 System i: Query Management Programming

program name and standard field names for the query status are also defined in this include module. Use

these names whenever required in the application program to allow for the transfer of query applications

between systems.

Example: RPG program in query management

Figure 78 is an example RPG program to process the WKPAY file.

 **

 * *

 * EXAMPLE 1 RPG PROGRAM USING QUERY INTERFACE *

 * -- *

 * *

 * 1) Include member DSQCOMMR contains the communications *

 * area to be passed to the query management interface. *

 * 2) The WKPAY weekly payroll details are read and the hours *

 * worked are multiplied by the hourly rate to calculate *

 * the week’s pay. The file is then updated with the weekly *

 * pay amount. *

 * 3) Once all the records in the WKPAY file are updated, then *

 * the interface is started and a query report *

 * printed using the just updated file. *

 * *

 **

 H

 FWKPAY UF E DISK

 *

 E COM 1 4 25 interface cmds

 *

 I DS

 I B 1 40BIN1

 I B 5 80BIN2

 I B 9 120BIN3

 I B 13 160BIN4

 I/COPY QRPG/QIRGINC,DSQCOMMR

 *

 * Update the Weekly Pay file with weekly earnings:

 *

 C *IN50 DOUEQ’1’

 C READ WKPAY 50 EOF

 C N50 HOURS MULT RATE WKAMT H calculate pay

 C N50 UPDATPAYR update pay file

 C END

 * ensure all

 C FEOD WKPAY changes done

Figure 78. Example RPG program (Part 1 of 2)

Appendix B. Example of DB2 for i5/OS query management interface 219

Example: COBOL program in query management

Figure 79 on page 221 is an example COBOL program to process the WKPAY file.

 * in storage

 * Start the query interface session:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM 5 BIN1 command length

 C PARM COM,1 START

 C PARM 1 BIN2 # keywords

 C PARM 8 BIN3 keyword length

 C PARM ’DSQSNAME’DATA8 8 keyword

 C PARM 4 BIN4 value length

 C PARM ’*SYS’ DATA4 4 value

 C PARM DSQVCH TYPE 4 CHAR

 *

 * Run the query:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM 16 BIN1 command length

 C PARM COM,2 RUN QUERY

 * SAMP1Q

 * Print the results of the query:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM 25 BIN1 command length

 C PARM COM,3 PRINT REPORT

 * (FORM=SAMP1F

 * End the query interface session:

 *

 C CALL DSQCIR

 C PARM DSQCOM comms area

 C PARM 4 BIN1 command length

 C PARM COM,4 EXIT

 *

 C MOVE ’1’ *INLR end the program

 *

** commands loaded as compile time array

START

RUN QUERY SAMP1Q

PRINT REPORT (FORM=SAMP1F

EXIT

Figure 78. Example RPG program (Part 2 of 2)

220 System i: Query Management Programming

IDENTIFICATION DIVISION.

 PROGRAM-ID. SAMP1.

 DATE-COMPILED.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION

 SOURCE-COMPUTER. IBM-AS400.

 OBJECT-COMPUTER. IBM-AS400.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT PAY-FILE

 ASSIGN TO DISK-WKPAY

 FILE STATUS IS PAY-FILE-STATUS.

 DATA DIVISION.

 FILE SECTION.

 FD PAY-FILE LABEL RECORDS STANDARD.

 01 PAY-REC.

 COPY DDS-PAYR OF WKPAY.

 WORKING-STORAGE SECTION.

 **

 * *

 * EXAMPLE 1 COBOL PROGRAM USING QUERY INTERFACE *

 * -- *

 * *

 * 1) Include member DSQCOMMB contains the communications *

 * area to be passed to the query management interface. *

 * *

 * 2) The WKPAY weekly payroll details are read and the hours *

 * worked are multiplied by the hourly rate to calculate *

 * the week’s pay. The file is then updated with the weekly *

 * pay amount. *

 * *

 * 3) Once all the records in the WKPAY file are updated, *

 * the interface is started and a query report *

 * printed using the file just updated. *

 * *

 **

 * Include the Communications area

 COPY DSQCOMMB OF QLBL-QILBINC.

 * Query Interface Commands

 77 START-CMD PIC X(5) VALUE "START".

 77 KEYWORD-NAME PIC X(8) VALUE "DSQSNAME".

 77 NAME-VALUE PIC X(4) VALUE "*SYS".

 77 RUN-QUERY-CMD PIC X(16) VALUE "RUN QUERY SAMP1Q".

 77 PRINT-CMD PIC X(25)

 VALUE "PRINT REPORT (FORM=SAMP1F".

 77 EXIT-CMD PIC X(4) VALUE "EXIT".

Figure 79. Example COBOL program (Part 1 of 3)

Appendix B. Example of DB2 for i5/OS query management interface 221

77 ONE PIC 9(8) USAGE IS BINARY VALUE 1.

 77 FOUR PIC 9(8) USAGE IS BINARY VALUE 4.

 77 FIVE PIC 9(8) USAGE IS BINARY VALUE 5.

 77 EIGHT PIC 9(8) USAGE IS BINARY VALUE 8.

 77 SIXTEEN PIC 9(8) USAGE IS BINARY VALUE 16.

 77 TWENTY-FIVE PIC 9(8) USAGE IS BINARY VALUE 25.

 77 PAY-FILE-STATUS PIC XX.

 01 FILE-END PIC X VALUE SPACE.

 88 END-OF-FILE VALUE "E".

 01 FILE-ERROR-INFO.

 05 OP-NAME PIC X(7).

 05 FILLER PIC X(20) VALUE " ERROR ON FILE WKPAY".

 05 FILLER PIC X(18) VALUE " - FILE STATUS IS ".

 05 STATUS-VALUE PIC XX.

 PROCEDURE DIVISION.

 DECLARATIVES.

 FILE-ERROR SECTION.

 USE AFTER STANDARD ERROR PROCEDURE ON PAY-FILE.

 FILE-ERROR-PARA.

 MOVE PAY-FILE-STATUS TO STATUS-VALUE.

 DISPLAY "FILE PROCESSING ERROR".

 DISPLAY FILE-ERROR-INFO.

 DISPLAY "PROCESSING ENDED DUE TO FILE ERROR".

 STOP RUN.

 END DECLARATIVES.

 FILE-UPDATE SECTION.

 OPEN-FILE.

 MOVE "OPEN" TO OP-NAME.

 OPEN I-O PAY-FILE.

 PERFORM READ-PAY-FILE THRU UPDATE-PAY-FILE

 UNTIL END-OF-FILE.

 READ-PAY-FILE.

 MOVE "READ" TO OP-NAME.

 READ PAY-FILE

 AT END SET END-OF-FILE TO TRUE

 MOVE "CLOSE" TO OP-NAME

 CLOSE PAY-FILE

 PERFORM PROCESS-QUERY.

 UPDATE-PAY-FILE.

 MULTIPLE HOURS BY RATE GIVING WKAMT ROUNDED.

 MOVE "UPDATE" TO OP-NAME.

 REWRITE PAY-REC.

 * Query Interface command and parameter lengths

 PROCESS-QUERY SECTION.

 START-INTERFACE.

 CALL DSQCIB USING DSQCOMM, FIVE, START-CMD,

 ONE, EIGHT, KEYWORD-NAME,

 FOUR, NAME-VALUE, DSQ-VARIABLE-CHAR.

Figure 79. Example COBOL program (Part 2 of 3)

222 System i: Query Management Programming

Query and form source in query management

The sample RPG and COBOL programs in Figure 78 on page 219 and Figure 79 on page 221 refer to

query and form source files to produce a report. Figure 80 is the query source file (SAMP1Q) referred to

in the sample programs.

 Figure 81 is the form source (SAMP1F) referred to in the sample programs.

Query and form printed output in query management

Figure 82 is the printed output resulting from running the command PRINT QUERY SAMP1Q on the query

source (SAMP1Q) referred to in the sample programs.

 Figure 83 is the printed output resulting from running the command PRINT FORM SAMP1F on the form

source (SAMP1F) referred to in the sample programs.

 RUN-QUERY.

 CALL DSQCIB USING DSQCOMM, SIXTEEN, RUN-QUERY-CMD.

 PRINT-REPORT.

 CALL DSQCIB USING DSQCOMM, TWENTY-FIVE, PRINT-CMD.

 EXIT-INTERFACE.

 CALL DSQCIB USING DSQCOMM, FOUR, EXIT-CMD.

 STOP RUN.

Figure 79. Example COBOL program (Part 3 of 3)

SELECT NAME, HOURS, RATE, WKAMT FROM BPLIB/WKPAY

ORDER BY NAME

Figure 80. Sample query source

H QM4 01 F 01 E E E R 01 03 89/11/20 15:51

T 1110 004 005 1112 007 1115 006 1116 005 1118 003 1113 015

R CHAR 2 30 1 Employee_Name

R NUMERIC 2 8 2 Hours_Worked

R NUMERIC 2 8 3 Hourly_Rate

R NUMERIC 2 8 4 Weekly_Pay

E

Figure 81. Sample form source

 DB2 for i5/OS Query Management

 Query : SAMP1Q

 Library : BPLIB

 Text : Query

 SEQNBR *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8...

 000001 SELECT NAME, HOURS, RATE, WKAMT FROM BPLIB/WKPAY

 000002 ORDER BY NAME

 * * * * * END OF SOURCE * * * * *

Figure 82. Printed output of query source

Appendix B. Example of DB2 for i5/OS query management interface 223

DB2 for i5/OS Query Management

 Form : SAMP1F

 Library : BPLIB

 Text : Form layout for sample 1 program

 Column Information

 Nbr Heading Usage Type Indent Width Edit Seq

 1 Employee_Name CHAR 2 30 1

 2 Hours_Worked NUMERIC 2 8 2

 3 Hourly_Rate NUMERIC 2 8 3

 4 Weekly_Pay NUMERIC 2 8 4

 Page Information

 Heading text : NO

 Blank lines before heading : 0

 Blank lines after heading : 2

 Footing text : NO

 Blank lines before footing : 2

 Blank lines after footing : 0

 Final Information

 Final text : NO

 New page for final text : NO

 Put final summary at line : 1

 Blank lines before text : 0

 Break Information

 Break number : 1

 Columns with this break number : NONE

 Heading text : NO

 New page for heading : NO

 Blank lines before heading : 0

 Blank lines after heading : 0

 Repeat column headings : NO

 Footing text : NO

 New page for footing : NO

 Blank lines before footing : 0

 Blank lines after footing : 1

 Put break summary at line : 1

 Break Information

 Break number : 2

 Columns with this break number : NONE

 Heading text : NO

 New page for heading : NO

 Blank lines before heading : 0

 Blank lines after heading : 0

 Repeat column headings : NO

Figure 83. Printed output of form source (Part 1 of 3)

224 System i: Query Management Programming

DB2 for i5/OS Query Management

 Form : SAMP1F

 Library : BPLIB

 Text : Form layout for sample 1 program

 Footing text : NO

 New page for footing : NO

 Blank lines before footing : 0

 Blank lines after footing : 1

 Put break summary at line : 1

 Break Information

 Break number : 3

 Columns with this break number : NONE

 Heading text : NO

 New page for heading : NO

 Blank lines before heading : 0

 Blank lines after heading : 0

 Repeat column headings : NO

 Footing text : NO

 New page for footing : NO

 Blank lines before footing : 0

 Blank lines after footing : 1

 Put break summary at line : 1

 Break Information

 Break number : 4

 Columns with this break number : NONE

 Heading text : NO

 New page for heading : NO

 Blank lines before heading : 0

 Blank lines after heading : 0

 Repeat column headings : NO

 Footing text : NO

 New page for footing : NO

 Blank lines before footing : 0

 Blank lines after footing : 1

 Put break summary at line : 1

 Break Information

 Break number : 5

 Columns with this break number : NONE

 Heading text : NO

 New page for heading : NO

 Blank lines before heading : 0

 Blank lines after heading : 0

 Repeat column headings : NO

 Footing text : NO

 New page for footing : NO

Figure 83. Printed output of form source (Part 2 of 3)

Appendix B. Example of DB2 for i5/OS query management interface 225

DB2 for i5/OS Query Management

 Form : SAMP1F

 Library : BPLIB

 Text : Form layout for sample 1 program

 Blank lines before footing : 0

 Blank lines after footing : 1

 Put break summary at line : 1

 Break Information

 Break number : 6

 Columns with this break number : NONE

 Heading text : NO

 New page for heading : NO

 Blank lines before heading : 0

 Blank lines after heading : 0

 Repeat column headings : NO

 Footing text : NO

 New page for footing : NO

 Blank lines before footing : 0

 Blank lines after footing : 1

 Put break summary at line : 1

 Option Information

 Detail line spacing : 1

 Outlining for break columns : YES

 Default break text : YES

 Column wrapped lines kept on page : YES

 Column heading separators : YES

 Break summary separators : YES

 Final summary separators : YES

 * * * * * E N D O F C O M P U T E R P R I N T O U T * * * * *

Figure 83. Printed output of form source (Part 3 of 3)

226 System i: Query Management Programming

Appendix C. Use of quotation marks and apostrophes when

setting global variables in query management

Determining how many quotation marks or apostrophes to use when setting up global variables within

procedures or programs can be difficult. The number of quotation marks and apostrophes that must be

used varies greatly, depending on what function of DB2 for i5/OS query management is being used.

The sets of quotation marks or apostrophes are necessary because of the various levels of parsing that the

system has to work through. If the right number of quotation marks are not provided, the query does not

run correctly.

A general rule is:

 If sets of quotation marks or apostrophes are inside of other sets of quotation marks or apostrophes,

and the type used (quotation mark or apostrophe) is the same throughout, then the inside sets must

be doubled to preserve them.

The following examples show how quotation marks and apostrophes are used when setting a global

variable that is used as a literal in an SQL statement. The examples show what happens when an

embedded quotation mark or apostrophe is in the substituted variable.

The following SQL statement, requiring a variable substitution, is used:

SELECT * FROM CUSTINFO

WHERE CUSTNAME=&CUSTNAME

The following report is being produced:

CUSTNAME CUSTID

--------------- ---------------

O’Malley 450

The actual SQL query that is run, with the variable substituted, in order to produce the report is:

SELECT * FROM CUSTINFO

 WHERE CUSTNAME=’O’’Malley’

Query global variable pool rules for question marks and apostrophes

in query management

The value that is set in the global variable pool for variable CUSTNAME is:

’O’’Malley’

To meet SQL statement rules, the embedded apostrophe is doubled. Because CUSTNAME is a character

string data type, the compare value is surrounded by apostrophes.

CL command rules for question marks and apostrophes in query

management

The CL command entered to run this is:

STRQMQRY QMQRY(CUSTQRY) SETVAR((CUSTNAME ’ ’’O’’’’Malley’’ ’)))

To meet CL command rules, the apostrophes embedded in the variable value is doubled and the entire

string is surrounded by apostrophes.

© Copyright IBM Corp. 1998, 2008 227

Message prompt rules for question marks and apostrophes in query

management

The QWM1913 message prompt occurs if the query is run interactively and the variable CUSTNAME has

not been set. The value entered for the message prompt is:

 Display Program Messages

Enter a value for variable CUSTNAME.

Type reply, press Enter.

 Reply . . . ’O’’Malley’__________________

F3=Exit F12=Cancel

High-level language programming rules for question marks and

apostrophes in query management

If the query command is entered through the callable interface (short version) from a high-level language

program, the setup is:

SET GLOBAL (CUSTNAME=’ ’’O’’’’Malley’’ ’

To meet query command string variable value rules, the apostrophes embedded in the variable value are

doubled and the entire string is surrounded by apostrophes. Following are high-level language examples:

v RPG

See Figure 20 on page 118 for an example of how to set up a string.

v COBOL

MOVE "SET GLOBAL (CUSTNAME=’ ’’O’’’’Malley’’ ’" TO COMMAND-STRING;

v C

strcpy(command_string,"SET GLOBAL (CUSTNAME=’ ’’O’’’’Malley’’ ’");

Using a query procedure rules for question marks and apostrophes in

query management

If the query command is entered through a query procedure, then the variable is set as follows:

’SET GLOBAL (CUSTNAME=’’ ’’’’O’’’’’’’’Malley’’’’ ’’ ’

When a SET GLOBAL command is run from a procedure, all the rules that apply to the callable interface

command line also apply. To enter a command from a procedure, all of the apostrophes embedded in the

command string must be doubled and the entire string must be surrounded by apostrophes.

228 System i: Query Management Programming

Methods for simplification of variables in query management

You can use the following methods to simplify setting variables:

1. Use the extended version of the callable interface in C, COBOL or RPG to set the global variable

value. The exact variable value is typed into the string. No extra quotation marks or apostrophes are

needed other than those required to delimit the field or to indicate a character value.

v COBOL

MOVE "’O’’Malley’" TO SET-VALUE;

v C

strcpy(set_value,"’O’’Malley’");

2. Use quotation marks (″) as well as apostrophes.

For a callable interface query command, use:

SET GLOBAL (CUSTNAME="’O’’Malley’"

If the variable value in the command string is delimited by a quotation mark, then apostrophes

imbedded in the value need not be doubled.

"SET GLOBAL (CUSTNAME="" ’O’’Malley’ "" "

When a SET GLOBAL command is done from a procedure, all the rules that apply to the callable

interface command line also apply. To enter a command from a procedure, the command string must

be surrounded by quotation marks (″) or apostrophes (’). If surrounded by quotation marks, all the

quotation marks imbedded in the string must be doubled. If surrounded by apostrophes, all the

apostrophes imbedded in the string must be doubled.

Appendix C. Use of quotation marks and apostrophes when setting global variables in query management 229

230 System i: Query Management Programming

Appendix D. Examples of sort sequence in query

management

This appendix provides sort sequence examples for multiple language environments. All example queries

and reports are run against the STAFF table. The staff table contains information such as employee name

and job. The staff table is as follows:

 Table 17. STAFF table

ID NAME DEPT JOB YEARS SALARY COMM

10 Sanders 20 Mgr 7 18357.50 0

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 MGR 5 17506.75 0

40 OBrien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 0

60 Quigley 38 SALES 00 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk 0 13504.60 128.20

90 Koonitz 42 sales 6 18001.75 1386.70

100 Plotz 42 mgr 6 18352.80 0

You can use a sort sequence table to:

v Sort

v Group

v Join

v Select records

v Determine minimum and maximum values

v Cause report breaks for SBCS character data

In the following examples, the queries and resulting reports used a binary character code sort sequence

(*HEX), a shared-weight sort sequence (*LANGIDSHR), or a unique-weight sort sequence

(*LANGIDUNQ).

Example of sort in query management

The following SQL statement causes a report to be sorted using the values in the JOB column of Table 17.

 SELECT * FROM STAFF ORDER BY JOB

Figure 84 on page 232 shows how sorting is done with a *HEX sort sequence.

© Copyright IBM Corp. 1998, 2008 231

Notice that the values in column JOB are in mixed case. There are values of Mgr, MGR, and mgr. The

rows are sorted by the value in the column JOB, but the uppercase MGR is treated differently than the

lowercase mgr. For this reason, the values of Mgr, MGR and mgr do not appear on adjacent rows. Also,

the value sales is less than the value Mgr.

Figure 85 shows how sorting is done with a shared-weight sort sequence.

 The rows are sorted by the value in the column JOB. Lowercase letters are treated the same as uppercase

letters. Notice that in Figure 85, all the values (mgr, Mgr and MGR) are together.

Figure 86 on page 233 shows how sorting is done with a unique-weight sort sequence.

 Display Report

 Query: * Width . . .: 71

 Form : * Column . .: 1

 Control _______

 Line +....1....+....2....+....3....+....4....+....5....+....6....

 ID NAME DEPT JOB YEARS SALARY COMM

 ------- --------- ------- ----- ------- ----------- ---------

 000001 100 Plotz 42 mgr 7 18,352.80 .00

 000002 90 Koonitz 42 sales 6 18,001.75 1,386.70

 000003 80 James 20 Clerk 0 13,504.60 128.20

 000004 10 Sanders 20 Mgr 7 18,357.50 .00

 000005 50 Hanes 15 Mgr 10 20,659.80 .00

 000006 30 Marenghi 38 MGR 5 17,506.75 .00

 000007 20 Pernal 20 Sales 8 18,171.25 612.45

 000008 40 OBrien 38 Sales 6 18,006.00 846.55

 000009 70 Rothman 15 Sales 7 16,502.83 1,152.00

 000010 60 Quigley 38 SALES 0 16,808.30 650.25

 ****** * * * * * E N D O F D A T A * * * * *

 F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Figure 84. SRTSEQ=*HEX. Example report showing sorting with no sort sequence

 Display Report

 Query: * Width . . .: 71

 Form : * Column . .: 1

 Control _______

 Line +....1....+....2....+....3....+....4....+....5....+....6....

 ID NAME DEPT JOB YEARS SALARY COMM

 ------- --------- ------- ----- ------- ----------- ---------

 000001 80 James 20 Clerk 0 13,504.60 128.20

 000002 10 Sanders 20 Mgr 7 18,357.50 .00

 000003 30 Marenghi 38 MGR 5 17,506.75 .00

 000004 50 Hanes 15 Mgr 10 20,659.80 .00

 000005 100 Plotz 42 mgr 7 18,352.80 .00

 000006 20 Pernal 20 Sales 8 18,171.25 612.45

 000007 40 OBrien 38 Sales 6 18,006.00 846.55

 000008 60 Quigley 38 SALES 0 16,808.30 650.25

 000009 70 Rothman 15 Sales 7 16,502.83 1,152.00

 000010 90 Koonitz 42 sales 6 18,001.75 1,386.70

 ****** * * * * * E N D O F D A T A * * * * *

 F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Figure 85. SRTSEQ=*LANGIDSHR, LANGID=ENU. Example report showing sorting with a shared-weight sort

sequence

232 System i: Query Management Programming

The rows are sorted by the value in the column JOB. This is the sorting that one would see in a national

language dictionary. Lowercase and uppercase letters are treated as unique, but they have a weight which

causes adjacent sorting of the lowercase and uppercase letters. The lowercase letters sort before the

uppercase letters.

Example of record selection in query management

The following SQL statement causes the report to show the records that have the value MGR in the JOB

column.

 SELECT * FROM STAFF WHERE JOB=MGR

Figure 87 on page 234 shows how record selection is done with a *HEX sort sequence.

 Display Report

 Query: * Width . . .: 71

 Form : * Column . .: 1

 Control _______

 Line +....1....+....2....+....3....+....4....+....5....+....6....

 ID NAME DEPT JOB YEARS SALARY COMM

 ------- --------- ------- ----- ------- ----------- ---------

 000001 80 James 20 Clerk 0 13,504.60 128.20

 000002 100 Plotz 42 mgr 7 18,352.80 .00

 000003 10 Sanders 20 Mgr 7 18,357.50 .00

 000004 50 Hanes 15 Mgr 10 20,659.80 .00

 000005 30 Marenghi 38 MGR 5 17,506.75 .00

 000006 90 Koonitz 42 sales 6 18,001.75 1,386.70

 000007 20 Pernal 20 Sales 8 18,171.25 612.45

 000008 40 OBrien 38 Sales 6 18,006.00 846.55

 000009 70 Rothman 15 Sales 7 16,502.83 1,152.00

 000010 60 Quigley 38 SALES 0 16,808.30 650.25

 ****** * * * * * E N D O F D A T A * * * * *

 F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Figure 86. SRTSEQ=*LANGIDUNQ, LANGID=ENU. Example report showing sorting with a unique-weight sort

sequence

Appendix D. Examples of sort sequence in query management 233

In Figure 87, the rows that match the record selection criteria for the column JOB are selected. The

lowercase mgr is not treated the same as the uppercase MGR. Rows are not selected for the value Mgr or

the value mgr. MGR is the only value for which a row is selected.

Figure 88 shows how record selection would be done with a shared-weight sort sequence.

 In Figure 88 the rows that match the record selection criteria for the column JOB are selected by treating

uppercase letters the same as lowercase letters. The values mgr, Mgr, and MGR are all selected.

Figure 89 on page 235 shows how record selection is done with a unique-weight sort sequence.

 Display Report

 Query: * Width . . .: 71

 Form : * Column . .: 1

 Control _______

 Line +....1....+....2....+....3....+....4....+....5....+....6....

 ID NAME DEPT JOB YEARS SALARY COMM

 ------- --------- ------- ----- ------- ----------- ---------

 000001 30 Marenghi 38 MGR 5 17,506.75 .00

 ****** * * * * * E N D O F D A T A * * * * *

 F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Figure 87. SRTSEQ=*HEX. Example report showing record selection with no sort sequence

 Display Report

 Query: * Width . . .: 71

 Form : * Column . .: 1

 Control _______

 Line +....1....+....2....+....3....+....4....+....5....+....6....

 ID NAME DEPT JOB YEARS SALARY COMM

 ------- --------- ------- ----- ------- ----------- ---------

 000001 10 Sanders 20 Mgr 7 18,357.50 .00

 000002 30 Marenghi 38 MGR 5 17,506.75 .00

 000003 50 Hanes 15 Mgr 10 20,659.80 .00

 000004 100 Plotz 42 mgr 7 18,352.80 .00

 ****** * * * * * E N D O F D A T A * * * * *

 F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Figure 88. SRTSEQ=*LANGIDSHR, LANGID=ENU. Example report showing record selection with a shared-weight sort

sequence

234 System i: Query Management Programming

In Figure 89, because the lowercase and uppercase letters are treated as unique, the lowercase mgr is not

treated the same as uppercase MGR. So, MGR is not selected.

Example of report breaks in query management

The following SQL statement causes the report to be sorted using the values in the JOB column.

 SELECT * FROM STAFF ORDER BY JOB

The report shown in Figure 90 on page 236 shows report breaks with a *HEX sort sequence. BREAK1 is

used on the JOB column and SUM is used on the SALARY column.

 Display Report

 Query: * Width . . .: 71

 Form : * Column . .: 1

 Control _______

 Line +....1....+....2....+....3....+....4....+....5....+....6....

 ID NAME DEPT JOB YEARS SALARY COMM

 ------- --------- ------- ----- ------- ----------- ---------

 000001 30 Marenghi 38 MGR 5 17,506.75 .00

 ****** * * * * * E N D O F D A T A * * * * *

 F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Figure 89. SRTSEQ=*LANGIDUNQ, LANGID=ENU. Example report showing record selection with a unique-weight sort

sequence

Appendix D. Examples of sort sequence in query management 235

In Figure 90, the rows are grouped for report breaks by the value in the column JOB whether some of the

values are uppercase or some are lowercase. The uppercase MGR is not treated the same as the mixed

case Mgr and so is not grouped into the same break level.

Figure 91 shows report breaks with a shared-weight sort sequence.

 ID NAME DEPT JOB YEARS SALARY COMM

 ------- --------- ------- ----- ------- ----------- ---------

 100 Plotz 42 mgr 7 18,352.80 .00

 * 18,352.80

 90 Koonitz 42 sales 6 18,001.75 1,386.70

 * 18,001.75

 80 James 20 Clerk 0 13,504.60 128.20

 * 13,504.60

 10 Sanders 20 Mgr 7 18,357.50 .00

 50 Hanes 15 10 20,659.80 .00

 * 39,017.30

 30 Marenghi 38 MGR 5 17,506.75 .00

 * 17,506.75

 20 Pernal 20 Sales 8 18,171.25 612.45

 40 OBrien 38 6 18,006.00 846.55

 70 Rothman 15 7 16,502.83 1,152.00

 * 52,680.08

 60 Quigley 38 SALES 0 16,808.30 650.25

 * 16,808.30

Figure 90. SRTSEQ=*HEX. Example report showing report breaks with no sort sequence

 ID NAME DEPT JOB YEARS SALARY COMM

------- --------- ------- ----- ------- ----------- ---------

 80 James 20 Clerk 0 13,504.60 128.20

 * 13,504.60

 10 Sanders 20 Mgr 7 18,357.50 .00

 30 Marenghi 38 5 17,506.75 .00

 50 Hanes 15 10 20,659.80 .00

 100 Plotz 42 7 18,352.80 .00

 * 74,876.85

 20 Pernal 20 Sales 8 18,171.25 612.45

 40 OBrien 38 6 18,006.00 846.55

 60 Quigley 38 0 16,808.30 650.25

 70 Rothman 15 7 16,502.83 1,152.00

 90 Koonitz 42 6 18,001.75 1,386.70

 * 87,490.13

Figure 91. SRTSEQ=*LANGIDSHR, LANGID=ENU. Example report showing report breaks with a shared-weight sort

sequence

236 System i: Query Management Programming

In Figure 91 on page 236, the rows are grouped for report breaks by the value in the column JOB.

Lowercase letters are treated the same as uppercase letters. All the values (mgr, Mgr, and MGR) are

grouped together in the same break level.

Figure 92 shows report breaks with a unique-weight sort sequence.

In Figure 92, the rows are sorted by the value in the column JOB. Lowercase and uppercase letters are

treated as unique, but they have a weight which causes adjacent sorting of the lowercase and uppercase

letters. The lowercase letters sort before the uppercase letters. When the rows are grouped into break

levels, only the values that are the same are grouped together.

Example of grouping in query management

The following SQL statement causes the summary data to be grouped using the values in the JOB

column.

SELECT JOB, SUM(SALARY) FROM STAFF GROUP BY JOB ORDER BY JOB

Figure 93 on page 238 shows query grouping with a *HEX sort sequence.

 ID NAME DEPT JOB YEARS SALARY COMM

 ------- --------- ------- ----- ------- ----------- ---------

 80 James 20 Clerk 0 13,504.60 128.20

 * 13,504.60

 100 Plotz 42 mgr 7 18,352.80 .00

 * 18,352.80

 10 Sanders 20 Mgr 7 18,357.50 .00

 50 Hanes 15 Mgr 10 20,659.80 .00

 * 39,017.30

 30 Marenghi 38 MGR 5 17,506.75 .00

 * 17,506.75

 90 Koonitz 42 sales 6 18,001.75 1,386.70

 * 18,001.75

 20 Pernal 20 Sales 8 18,171.25 612.45

 40 OBrien 38 Sales 6 18,006.00 846.55

 70 Rothman 15 Sales 7 16,502.83 1,152.00

 * 52,680.13

 60 Quigley 38 SALES 0 16,808.30 650.25

 * 16,808.30

Figure 92. SRTSEQ=*LANGIDUNQ, LANGID=ENU. Example report showing report breaks with a unique-weight sort

sequence

Appendix D. Examples of sort sequence in query management 237

In Figure 93, the rows are grouped for report breaks by the value in the column JOB. Because MGR is not

treated the same as Mgr, these values are not grouped in the same break level.

Figure 94 shows how grouping is done for a shared-weight sort sequence.

 In Figure 94, the rows are grouped for report breaks by the value in the column JOB. Lowercase letters

are treated the same as uppercase letters. All the values (mgr, Mgr and MGR) are grouped together.

Figure 95 on page 239 shows how grouping is done with a unique-weight sort sequence.

 Display Report

 Query: * Width . . .: 71

 Form : * Column . .: 1

 Control _______

 Line +....1....+....2....+....3....+....4....+....5....+....6....

 JOB SUM (SALARY)

 ----- --

 000001 mgr 18,352.80

 000002 sales 18,001.75

 000003 Clerk 13,504.60

 000004 Mgr 39,017.30

 000005 MGR 17,506.75

 000006 Sales 52,680.08

 000007 SALES 16,808.30

 ****** * * * * * E N D O F D A T A * * * * *

 F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Figure 93. SRTSEQ=*HEX. Example report showing grouping with no sort sequence

 Display Report

 Query: * Width . . .: 71

 Form : * Column . .: 1

 Control _______

 Line +....1....+....2....+....3....+....4....+....5....+....6....

 JOB SUM (SALARY)

 ----- --

 000001 Clerk 13,504.60

 000002 Mgr 74,876.85

 000003 Sales 87,490.13

 ****** * * * * * E N D O F D A T A * * * * *

 F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Figure 94. SRTSEQ=*LANGIDSHR, LANGID=ENU. Example report showing grouping with a shared-weight sort

sequence

238 System i: Query Management Programming

In Figure 95, the rows are sorted by the value in the column JOB. Lowercase and uppercase letters are

treated as unique, but they have a weight which causes adjacent sorting. Lowercase letters sort before

uppercase letters. For this reason, the value mgr appears before the value Mgr, and the value Mgr

appears before the value MGR.

When the rows are grouped into break levels, only the values that are the same are grouped together.

Break summary use in query management

In Figure 93 on page 238, the rows are grouped for report breaks by the value in the column JOB. The

uppercase MGR is not treated the same as the mixed case Mgr. MGR and mgr are not grouped in the

same break level.

 Display Report

 Query: * Width . . .: 71

 Form : * Column . .: 1

 Control _______

 Line +....1....+....2....+....3....+....4....+....5....+....6....

 JOB SUM (SALARY)

 ----- --

 000001 Clerk 13,504.60

 000002 mgr 18,352.80

 000003 Mgr 39,017.30

 000004 MGR 17,506.75

 000005 sales 18,001.75

 000006 Sales 52,680.13

 000006 SALES 16,808.30

 ****** * * * * * E N D O F D A T A * * * * *

 F3=Exit F12=Cancel F19=Left F20=Right F21=Split

Figure 95. SRTSEQ=*LANGIDUNQ, LANGID=ENU. Example report showing grouping with a unique-weight sort

sequence

Appendix D. Examples of sort sequence in query management 239

240 System i: Query Management Programming

Appendix E. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1998, 2008 241

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming interface information

This Query Management Programming publication documents intended Programming Interfaces that

allow the customer to write programs to obtain the services of IBM i5/OS.

242 System i: Query Management Programming

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 DB2

 Distributed Relational Database Architecture

 DRDA

 i5/OS

 IBM

 MVS

 QMF

 RPG/400

 SQL/DS

 System i

 System/36

 WebSphere

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Appendix E. Notices 243

244 System i: Query Management Programming

Index

Special characters
* record 134

&col 75

&DATE 75

&PAGE 75

&TIME 75

varname values
quotation marks 50

A
access

callable interface
using subprograms 112

activation group
default 158

introducing 19

nondefault 159

activation groups
commitment control 162

default and nondefault 159

nondefault 160

activation groups and DRDA 158

apostrophe (setting global variables) 227

application data record 134

authorization 5

B
bracketed-DBCS constant 210

bracketed-DBCS data 209

Break fields 78

break-level definition 78

break-level summary groups
sorting 179

subsetting 179

breaks
example 235

report 235

C
C edit code 69, 197, 212

C language sample
callable interface 92

C sample
callable interface 97

CALL SQL
RUN command

CALL SQL limitations 44

RUN command limitations 44

callable interface 83

RPG 105

using subprograms 112

callable interface (CI) 83

C language sample 92

C sample 97

COBOL example 101, 103

COBOL sample 99

callable interface (CI) (continued)
command syntax extension 86

communication area
DSQCOMM 85

create variables 87

defined variables 88

description 84

elements 83

example
RPG 108, 110

extended variable support 87

modules 83

referring to variables 87

return codes 86

return variables
command message 86

query message 86

variable names 87

captions, stacking 175

categories
error 62

CCSID (coded character set identifier)
definition 163

export 32

export processing 163

import 37

import processing 163

print processing 163

sort sequence processing 163

CCSID considerations 40

CCSID use
RUN command 44

character data
edit codes 69

character variable
sample CL program 206

character variable values 88

CI (callable interface)
See callable interface (CI)

CL program
sample for character variables 206

COBOL example
callable interface 101, 103

COBOL language 99

program example 220

COBOL sample
callable interface 99

coded character set identifier (CCSID)
definition 163

export processing 163

import processing 163

print processing 163

sort sequence processing 163

codes
edit 69

return 101, 107

callable interface 96

collection
definition 1

use 2

column
definition 1, 65

tables 138

Column Fields 65

DBCS considerations 212

column heading 66

command
considerations

with DRDA 160

SAVE DATA AS 161

command procedure
example 57

query 55

command syntax extension
callable interface 86

commands 21

export
CCSID (coded character set

identifier) 32

generic 7

import
CCSID (coded character set

identifier) 37

parsing 21

procedure 55

query management 21

COMMIT 23

CONNECT 24

DISCONNECT 26

ERASE 27

EXIT 29

EXPORT 29

GET 18, 32

IMPORT 33

PRINT 37

RELEASE 41

RUN 42

SAVE 45

SET 18

SET CONNECTION 48

SET GLOBAL 49

START 51

run
considerations 42, 44

used in a procedure 59

commands, general description
Control Language, general

description 57

COMMENT option
query management

EXPORT command 29

SAVE command 45

COMMENT OPTION
query management

IMPORT command 33

comments 11

in a procedure 59

commitment control 161

attributes 92

definition 92

DSQCMTLV 52, 92

© Copyright IBM Corp. 1998, 2008 245

commitment control (continued)
for nondefault activation groups 162

SAVE DATA AS command 52

Common Programming Interface

(CPI) 1

query management 1

communications area
DSQCOMM 95, 100

DSQCOMMR 107

CONFIRM option
ERASE command 28

EXPORT command 31

IMPORT command 33

SAVE command 45

CONNECT
parameter list 25

CONNECT command
examples under DUW 26

examples under RUW 25

PASSWORD option 24

RESET option 24

TO option 24

USER option 24

connection management 156

method considerations 157

statements 156

connections
read-only 157

considerations
CCSID 40

connection management method 157

ILE C 161

programming 50

run command 42, 44

constant 210

continuations
line 11

control language (CL) 57

example program 203, 206

interface 203

query management 6

Control Language commands 57

conversation types 156

conversion 184

command example 193

considerations 185

DB2 for i5/OS query

management 184

example steps 193, 194

multiple-level summary-only

QRYDFN 176

problem detection 190

specifying 184

create variables
callable interface 87

creating
default form 63

procedures 59

queries 9, 10

CT edit code 69, 212

CW edit code 69, 212

D
data

DBCS 209

SBCS 209

DATA
exporting 29

saving 45

data set
exporting 29

importing 37

data types
DBCS 210

database
capability 9

names
qualifiers 2

restrictions 2

datatype field 69

DATE
ambiguous literals 136

edit code table 69

date format use
RUN command 44

DATETIME option for PRINT

command 37

DBCS 209

DBCS data
bracketed 209

constant 210

default report width 209

definition 209

displaying 209

form object 212

global variables 215

graphic 209

length 209

mixed 209

printing 209

saving 214

types 210

using 209

default
activation group 158

default form
creating 63

defaults
editing 72

runtime 71

width 73

defined variables
callable interface 88

definition
CCSID (coded character set

identifier) 163

report form 63

diagrams
syntax 22

diagrams, syntax 22

Distributed Relational Database

Architecture (DRDA) 155

rdbname
naming conventions 52

distributed unit of work (DUW) 155

DRDA
command considerations 160

DRDA (Distributed Relational Database

Architecture)
rdbname

naming conventions 52

DRDA and activation groups 158

DSQCIB
syntax 99

DSQCIC syntax 95

DSQCICE
syntax 95

DSQCIR
syntax 106

DSQCMTLV 52

DSQCOMM
callable interface communication

area 85

interface communications area 95,

100

DSQCOMMB example 103

DSQCOMMC example 92

DSQCOMMR
interface communications area 107

DSQCOMMR example 110

DSQRDBCNNMTH keyword
using 157

DSQRDBCNNMTH keyword with

START, using the 157

DSQSCMD
START command 52

DSQSCMD keyword 55

DSQSDBNM keyword
using 158

DSQSMODE
procedures 60

START command 52

DSQSRUN
START command 52

DUW (distributed unit of work) 155

E
E record 134

edit code
K 197

edit codes 69

character data 69

CT 69, 212

CW 69, 212

date table 69

DBCS 212

DBCS-graphic 212

G 212

GW 212

numeric data 69

specify option 190

time table 69

timestamp table 69

using 173

editing
defaults 72

elements of callable interface 83

encoded format 126, 137

description 137

importing 137

records 126

end-of-object record 134

environment 1

ERASE command 27

CONFIRM option 28

examples 29

NAME option 28

246 System i: Query Management Programming

error
categories 62

error messages 7

errors during procedure processing 62

example 59

COBOL, callable interface 101, 103

command procedure 57

creating forms 63

creating queries 10

RPG
callable interface 108, 110

examples
CONNECT command under

DUW 26

CONNECT command under

RUW 25

ERASE command 29

EXPORT command 32

GET command 33

PRINT command 40

RUN command 45

SAVE command 47

SET CONNECTION command 49

SET GLOBAL command 50

sort sequence 231

EXIT
subprogram 123

EXIT command 29

program example 123

export 29

form 15, 138

procedure 16

query 15

EXPORT 135, 137

EXPORT command 29

CONFIRM option 31

examples 32

FILENAME option 31

NAME option 31

Export processing
CCSID (coded character set

identifier) 163

exported data set 29

exported objects 125

exported procedure 29

extended variable support
callable interface 87

external format 126

F
field definition 1

fields
definition 137

hexadecimal data 137

variable length 137

variable-length character 137

variable-length either 137

variable-length only 137

variable-length open 137

file use
printer 40

FILENAME option
EXPORT command 31

IMPORT command 33

final text definition 77

Final text fields 77

footing definition 74

form
DBCS considerations 212

erasing 27

importing 137

FORM
exporting 29

importing 37

printing 37

form format 139

FORM option
PRINT command 37

format
encoded 126

external 126

panel 126

format of objects 125

formatting
print object 40

print report 41

terminology 64

G
G edit codes 212

generic commands 7

GET
parameter list 32

GET command 32

examples 33

parameters
value length 32

value type 32

values 32

varname 32

varname lengths 32

GET GLOBAL command 18, 32

getting variables 18

global variables
DBCS 215

examples of setting 227

use of quotation marks and

apostrophes 227

graphic data
types

GRAPHIC 210

LONG VARGRAPHIC 210

VARGRAPHIC 210

GRAPHIC data type
description 210

graphic-DBCS constant 210

graphic-DBCS data 209

groups
activation 19

GW edit codes 212

H
H record 127

header record 127

heading
column 66

heading definition 74

high-level languages 92

how to read
syntax diagrams 22

I
i5/OS

objects 4

IBM Query for i5/OS and query

management
differences 192

ILE (Integrated Language Environment)
C

activation group 19

ILE C
considerations 161

import 135

form 15, 137

procedure 16

query 15

IMPORT 135, 137

IMPORT command
CONFIRM option 33

FILENAME option 33

NAME option 33

import processing
CCSID (coded character set

identifier) 163

imported data set 37

imported objects 125

imported procedure 37

indent field 68

instance 13

creating 13

processing 13

result set 13

running 13

integer variable values 88

Integrated Language Environment (ILE)
C

activation group 19

interactive procedure 60

interface
callable 83

interface communications area
DSQCOMM 95, 100

DSQCOMMR 107

interface example
interface 217

introducing activation groups 19

ISQL 173

K
K edit code 197

keyword 21

DSQRDBCNNMTH 157

DSQSCMD 55

DSQSDBNM 158

L
LENGTH option

PRINT command 37

library definition 1

limitations
CALL SQL in RUN command 44

line continuation 11

line continuations 11

line spacing definition 81

Index 247

line wrapping
what happens when not specified 37

list, parameter
START 52

literals
date, time

ambiguous 136

long column names
and remote processing 162

LONG VARGRAPHIC data type
description 210

M
management

connection 156

message descriptions 7

messages 7

multiple-level summary-only QRYDFN
converting 176

N
NAME option

ERASE command 28

EXPORT command 31

IMPORT command 33

NAME2 option for SAVE command 45

names
variable 5

names, database
qualified 2

qualifiers 2

restrictions 2

naming
other query 5

SQL 3

system 2

naming conventions
in database 2

nested procedures 61

nondefault activation group 159

nondefault activation groups 160

null value
considerations 47

number of keywords parameter
START command 51

number of varnames parameter
SET GLOBAL command 49

numeric data
edit codes 69

O
object format 125

object formatting
print 40

objects 184

i5/OS 4

inspection 190

printing 167

query 2

query definition (QRYDFN) 184

query management 6

options
COMMENT

SAVE command 45

CONFIRM
ERASE command 28

EXPORT command 31

IMPORT command 33

SAVE command 45

DATETIME
PRINT command 37

DSQRDBCNNMTH
START command 51

DSQSCMD
START command 51, 52

DSQSMODE
START command 51, 52

DSQSRUN
START command 51, 52

FILENAME
EXPORT command 31

FORM
PRINT command 37

RUN command 42

LENGTH
PRINT command 37

NAME
ERASE command 28

EXPORT command 31

IMPORT command 33

RUN command 42

PAGENO
PRINT command 37

PRINTER
PRINT command 37

PROC
RUN command 42

QUERY
RUN command 42

query definition (QRYDFN) 190

TABLENAME
SAVE command 45

usage 67

WIDTH
PRINT command 37

Options fields 81

other query names 5

output inspection 190

override 165

considerations 165

printer files 40

specifying 173

overview
query management 1

P
page fields 74

page splitting
width less than print line 37

PAGENO option for PRINT

command 37

panel format 126

parameter list
connect 25

GET 32

START 52

parameters
keyword length

START command 51

keywords
START command 51

number of varnames
SET GLOBAL command 49

userval
SET GLOBAL command 49

value length
GET command 32

SET GLOBAL command 49

START command 51

value type
GET command 32

SET GLOBAL command 49

START command 51

values
GET command 32

SET GLOBAL command 49

START command 51

varname
GET command 32

SET GLOBAL command 49

varname lengths
GET command 32

SET GLOBAL command 49

parsing of commands 21

PASSWORD option (CONNECT

command) 24

print
object formatting 40

PRINT command 37

DATETIME option 37

examples 40

FORM option 37

LENGTH option 37

PAGENO option 37

PRINTER option 37

WIDTH option 37

print processing
CCSID (coded character set

identifier) 163

print report
formatting 41

printer file 40

printer file use 40

PRINTER option
PRINT command 37

printing 37

objects 167

reports 41

PROC
exporting 29

importing 37

printing 37

running 42

procedures 16

creating 59

erasing 27

error handling 62

exporting 16

how to create 59

importing 16

interactive 60

nested 61

printing 37

248 System i: Query Management Programming

procedures (continued)
procedure objects 61

running 16

processing
remote and long column names 162

programming considerations 50

programs 218

COBOL 220

control language 203

RPG 219

prompting
variable 11

prompting variables 11

Q
QMFORM 6

creating 14

creating objects for character

variables 205

description 6

example 203, 205

QMQRY 6

creating objects for character

variables 205

description 6

example 203, 205

QRYDFN 183

adding SQL function 179

analyzing 189

conversion 184

guidelines 190

objects 184

using 183

qualified names
in database 2

query
capability 9

creating 9, 10

erasing 27

objects 2

printing 37

running 13, 42

query command procedure 55

query definition (QRYDFN) 183

query management
CL commands 6

considerations 165

environment 1

in a query definition 179

macroinstructions 83

objects 6

overview 1

tables 17

terminology 1

query names, other 5

quotation marks
varname values 50

command string keywords and

variables 21

Extended Parameter Keywords 21

Extended Parameter Variables 21

in variables 50

setting global variables 227

R
R record 132

read-only connections 157

record definition 1

record format rules
for input 138

for output 138

record selection 233

records in encoded format 126

referring to variables
callable interface 87

relational data queries 9

Relational Database Directory
definition 52

RELEASE command 41

remote processing
and long column names 162

remote unit of work (RUW) 155

report
break level 78

column 65

creating 14

final text 77

footing 74

heading 74

options 81

printing 41

producing 217

REPORT
printing 37

report breaks 235

report form
definition 63

report formatting
print 41

result set 13

return codes
callable interface 86, 96, 101, 107

return variables
callable interface 86

command message
callable interface 86

query message
callable interface 86

row definition 1

RPG
callable interface

example 108, 110

callable interface (CI) 105

program example
callable interface 108, 110

RPG program 219

program example 219

rules for record format 138

RUN command 42

CCSID use 44

date format use 44

examples 45

FORM option 42

NAME option 42

PROC option 42

program example 121, 123

QUERY option 42

RUNP
subprogram 123

RUNQ
subprogram 121

runtime
defaults 71

runtime environment
stopping 180

RUW (remote unit of work) 155

S
sample

C, callable interface 97

COBOL, callable interface 99

SAVE command
examples 47

NAME1 option 45

NAME2 option 45

tablename option 45

SAVE DATA AS command 161

commitment control 52

null value considerations 47

SBCS data 209

security 5

selection
record 233

seq field 71

SET command 115

program example 115, 117, 119

SET CONNECTION command 48

examples 49

SET GLOBAL command 18, 49

examples 50

parameters
number of varnames 49

userval 49

value length 49

value type 49

values 49

varname 49

varname length 49

SETA
subprogram 117

SETC
subprogram 115

SETC subprogram 115

CL program 203, 206

COBOL program 220

command procedure 57

conversion commands 193

DSQCOMMB 103

DSQCOMMC 92

DSQCOMMR 110

QMFORM 203, 205

QMQRY 203, 205

RPG program 219

SETN
subprogram 119

setting variables 18

shift-in character (DBCS) 209

shift-out character (DBCS) 209

sort sequence
examples 231

sort sequence processing
CCSID (coded character set

identifier) 163

sorting 231

break-level summary groups 179

special variables
&col 75

Index 249

special variables (continued)
&DATE 75

&PAGE 75

&TIME 75

SQL 9, 173

naming 3

SQL date format
table 136

SQL function
in a query definition 179

SQL time format
table 136

stacking captions 175

START
subprogram 113

START command 51

keywords
DSQRDBCNNMTH 51

DSQSCMD 51

DSQSDBNM 52

DSQSMODE 51

DSQSRUN 51

parameters
keyword length 51

keywords 51

number of keywords 51

value lengths 51

value type 51

values 51

statements
connection management 156

status 157

STRQMQRY command
using instead of RUNQRY 194

subprogram
EXIT 123

RUNP 123

RUNQ 121

SETA 117

SETC 115

SETN 119

START 113

subprogram use 112

subprograms
access callable interface 112

subsetting
break-level summary groups 179

substituting variables 11, 14

substitution
variable 11

syntax
DSQCIB 99

DSQCIC 95

DSQCICE 95

DSQCIR 106

syntax diagrams 22

how to read 22

system
naming 2

T
T record 130

table description record 130

table row record 132

tablename option for SAVE

command 45

tables 17

query management 17

terms used in formatting 64

text insertion
using to stack captions 175

using with tabular layout 175

TIME
ambiguous literals 136

edit code table 69

TIMEST (TIMESTAMP)
edit code table 69

tips and techniques 167

U
unit of work

distributed 155

remote 155

usage field 67

usage options 67

use
printer file 40

USER option (CONNECT command) 24

userval parameter
SET GLOBAL command 49

using DSQRDBCNNMTH keyword 157

using DSQSDBNM keyword 158

using subprograms
callable interface 112

V
V record 129

value
lengths parameter 32

type parameter 32

value length parameter
SET GLOBAL command 49

START command 51

value record 129

value type parameter
SET GLOBAL command 49

START command 51

values parameter
GET command 32

SET GLOBAL command 49

START command 51

VARGRAPHIC data type
description 210

variable
names 5

prompting 11

substitution 11

variable data
restrictions 2

variable length
definition 137

fields 137

hex data 137

variable-length character 137

variable-length either 137

variable-length only 137

variable-length open 137

variable names
callable interface 87

variable support
C 94

variables 11

create 87

defined 88

DSQ 55

DSQCMTLV 52

DSQCONFIRM 55

DSQOAUTH 55

DSQSCNVT 55

DSQSMODE 55

DSQSNAME 55

DSQSRUN 55

extended support 87

getting 18, 32

global substitution 14

name 31, 35

naming 87

prompting 11

referring to 87

setting 18

special 75

substituting 11

values
character 88

integer 88

varname
getting 32

lengths parameter 32

setting 49

varname parameter
GET command 32

SET GLOBAL command 49

view definition 1

W
width

defaults 73

width field 69

WIDTH option
PRINT command 37

250 System i: Query Management Programming

Readers’ Comments — We’d Like to Hear from You

System i

Query Management Programming

Version 6 Release 1

 Publication No. SC41-5703-07

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your

IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use

the personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send a fax to the following number: United States and Canada: 1-800-937-3430
Other countries: 1-507-253-5192

v Send your comments via e-mail to: RCHCLERK@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC41-5703-07

SC41-5703-07

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION

ATTN DEPT 542 IDCLERK

3605 HWY 52 N

ROCHESTER MN 55901-7829

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in USA

SC41-5703-07

	Contents
	About Query Management Programming (SC41–5703)
	Who should use the Query Management Programming book
	What query management does not do
	Prerequisite and related information
	How to send your comments

	Chapter 1. Introduction to query management
	Query management overview
	i5/OS and the query management environment
	Collection use by query management

	Naming conventions in query management
	Naming conventions for query objects for query management
	System naming in query management
	SQL naming in query management

	Security and authorization in query management
	Objects in query management
	CL commands that support objects in query management
	Generic commands in query management

	Message descriptions in query management

	Chapter 2. Query capability in query management
	Creating queries in query management
	Example: Creating queries in query management
	Query restrictions in query management
	Variable substitution in query management
	Variable prompting in query management
	Comments in query management
	Line continuations in query management
	Using sort sequence in query management

	Chapter 3. Instance processing in query management
	Creating an instance in query management
	Running a query in query management
	Global variable substitution in query management

	Creating reports in query management
	Importing a query or form object in query management
	Exporting a query or form object in query management
	Importing and exporting a procedure in query management
	Running a procedure in query management

	Using the SAVE DATA AS command in query management
	Using SET GLOBAL and GET GLOBAL commands in query management
	Introducing activation groups in query management

	Chapter 4. Commands in query management
	Specifying commands and keywords in query management
	Command parsing in query management
	How to read the syntax diagrams in query management

	COMMIT in query management
	Authorization
	Syntax
	Parameter list
	Examples: COMMIT in query management

	CONNECT in query management
	Authorization
	Syntax
	Parameter list of CONNECT in query management
	Examples: CONNECT under RUW connection management
	Examples: CONNECT under DUW connection management

	DISCONNECT in query management
	Authorization
	Syntax
	Parameter list
	Examples: DISCONNECT in query management

	ERASE in query management
	Authorization
	Syntax
	Parameter list of ERASE in query management
	Examples: ERASE in query management

	EXIT in query management
	Authorization
	Syntax
	Parameter list
	Examples: EXIT in query management

	EXPORT in query management
	Authorization
	Syntax
	Parameter list of EXPORT in query management
	CCSID considerations of EXPORT in query management
	Examples: EXPORT in query management

	GET in query management
	Authorization
	Syntax
	Parameter list
	Examples: GET in query management

	IMPORT in query management
	Authorization
	Syntax
	Parameter list
	Usage
	CCSID considerations of IMPORT in query management
	Examples: IMPORT in query management

	PRINT in query management
	Authorization
	Syntax
	Parameter list
	CCSID considerations of PRINT in query management
	Examples: PRINT in query management
	Printer file use in query management
	PRINT object formatting in query management
	PRINT report formatting in query management

	RELEASE in query management
	Authorization
	Syntax
	Parameter list
	Examples: RELEASE in query management

	RUN in query management
	Authorization
	Syntax
	Parameter list
	RUN considerations in query management
	Date format use for RUN in query management
	CCSID use of RUN in query management
	CALL SQL RUN limitations in query management

	Examples: RUN in query management

	SAVE in query management
	Authorization
	Syntax
	Parameter list
	Examples: SAVE in query management
	Null value considerations of SAVE in query management
	Referential constraint considerations of SAVE in query management
	Long column name considerations of SAVE in query management

	SET CONNECTION in query management
	Authorization
	Syntax
	Parameter list
	Examples: SET CONNECTION in query management

	SET GLOBAL in query management
	Authorization
	Syntax
	Parameter list
	Examples: SET GLOBAL in query management
	Quotation marks in varname values when using SET GLOBAL in query management
	Programming considerations of SET GLOBAL in query management

	START in query management
	Authorization
	Syntax
	Extended parameter list of START
	Examples: START in query management
	START query command procedure in query management
	Example: Command procedure in query management

	CL commands in query management
	ANZQRY (Analyze Query) in query management
	CRTQMFORM (Create Query Management Form) in query management
	CRTQMQRY (Create Query Management Query) in query management
	DLTQMFORM (Delete Query Management Form) in query management
	DLTQMQRY (Delete Query Management Query) in query management
	RTVQMFORM (Retrieve Query Management Form) in query management
	RTVQMQRY (Retrieve Query Management Query) in query management
	STRQMPRC (Start Query Management Procedure)
	STRQMQRY (Start Query Management Query)
	WRKQMFORM (Work with Query Management Forms)
	WRKQMQRY (Work with Query Management Queries)

	Chapter 5. Procedures in query management
	Creating procedures in query management
	Example 1 of creating procedures in query management
	Example 2 of creating procedures in query management
	Steps for creating a procedure in query management
	User interaction in procedures in query management
	Procedure interaction in query management
	Procedure objects in query management
	Handling procedure errors in query management
	Categories of procedure errors in query management

	Chapter 6. Report forms in query management
	How applications can use the form in query management
	Creating forms in query management
	Creating a default form in query management

	Formatting terminology in query management
	DBCS data in query management

	Column Fields in query management
	Data type for column in query management
	Headings for column in query management
	Usage for column in query management
	Indent for column in query management
	Width for column in query management
	Datatype for column in query management
	Edit codes for column in query management
	Seq for column in query management
	Runtime defaults for column in query management
	Heading defaults for column in query management
	Editing defaults for column in query management
	Width defaults for column in query management

	Page fields in query management
	Blank lines before heading/footing for page fields in query management
	Blank lines after heading/footing for page fields in query management
	Heading text lines for page fields in query management
	Line value of heading text lines for page fields in query management
	Align field of heading text for page fields in query management
	Heading text field for page fields in query management

	Footing text lines for page fields in query management
	Line value of footing text lines for page fields in query management
	Align field of the footing text for page fields in query management
	Footing text field for page fields in query management

	Final text fields in query management
	New page for final text fields in query management
	Put final summary at line for final text fields in query management
	Blank lines before text for final text fields in query management
	Line field for final text lines in query management
	Align field for final text fields in query management
	Final text lines for final text fields in query management

	Break fields in query management
	New page for break/new page for footing for break field in query management
	Repeat column heading for break field in query management
	Blank lines before heading/footing for break field in query management
	Blank lines after heading/footing for break field in query management
	Put break summary at line for break field in query management

	Break heading text lines
	Line value for break heading text lines in query management
	Align field for break heading text in query management
	Break heading text for break heading in query management

	Break footing text lines in query management
	Line value for break footing text lines in query management
	Align field for break footing text in query management
	Break footing text field for break footing in query management

	Options fields in query management
	Detail line spacing for options field in query management
	Outlining for break columns for options field in query management
	Default break text for options field in query management
	Column wrapped lines kept on a page for options field in query management
	Column heading separators for options field in query management
	Break summary separators for options field in query management
	Final summary separators for options field in query management

	Chapter 7. Callable interface in query management
	Callable interface in query management description
	Interface communications area (DSQCOMM) in query management CI
	Return codes in the query management CI
	Return variables in the query management CI
	Command message variables in the query management CI
	Query message variables in the query management CI

	Command syntax extension in the query management CI

	Extended variable support in the query management CI
	Creating variables in the query management CI
	Referencing variables in the query management CI
	Variable names in the query management CI
	Variable values in the query management CI
	Character variables in the query management CI
	Integer variables in the query management CI

	Defined variables in the query management CI

	Commitment control in the query management CI
	Accessing CI with HLL programs in query management
	C language interface in the query management CI
	Example DSQCOMMC of the C interface in the query management CI
	C variable support in the query management CI
	DSQCIC function syntax for C in the query management CI
	DSQCICE function syntax for C in the query management CI

	Interface communications area (DSQCOMM) for C in the query management CI
	Return codes for C language interface in the query management CI
	Sample C language query CI program in query management

	COBOL language interface in the query management CI
	DSQCIB function syntax in the query management CI
	DSQCIB extended function syntax for COBOL in the query management CI
	Interface communications area (DSQCOMM) for COBOL in the query management CI
	Return codes for COBOL in the query management CI
	Example 1 of COBOL query CI program in query management
	Example 2 of COBOL query CI program in query management

	RPG language interface in the query management CI
	DSQCIR function syntax for RPG in the query management CI
	DSQCIR extended function syntax for RPG in the query management CI
	Interface communications area (DSQCOMMR) for RPG in the query management CI
	Return codes for RPG in the query management CI
	Example 1 of RPG language query CI program in the query management CI
	Example 2 of RPG language query CI program in the query management CI

	Using subprograms to access CI in query management
	START subprogram in the query management CI
	SETC subprogram in the query management CI
	SETA subprogram in the query management CI
	SETN subprogram in the query management CI
	RUNQ subprogram in the query management CI
	RUNP subprogram in the query management CI
	EXIT subprogram in the query management CI

	Chapter 8. Exported and imported objects in query management
	General object formats in query management
	Comments in externalized objects in query management
	External formats in query management
	Panel format in query management
	Encoded format in query management
	Size of the encoded format in query management
	Records that make up the base encoded format in query management
	Header (“H”) record in query management
	Value (“V”) records in query management
	Table description (“T”) records in query management
	Table row (“R”) records in query management
	End-of-object (“E”) record in query management
	Application data (“*”) record in query management

	EXPORT and IMPORT file considerations in query management
	Ambiguous date and time literals in query management
	Variable-length fields in query management
	Display format in query management
	Encoded format in query management
	Importing a form object in query management
	Columns table details in query management
	Exporting a form object in query management
	Record format rules in query management

	Specific query object formats in query management
	Externalized form format in query management
	Externalized procedure and query formats in query management

	IMPORT QUERY considerations for sort sequence in query management
	Error handling and warning conditions in query management
	Failing conditions in query management

	EXPORT QUERY considerations for sort sequence in query management
	Externalized query description in query management

	Chapter 9. Distributed Relational Database Architecture in query management
	Remote unit of work in query management DRDA
	Distributed unit of work in query management DRDA
	Connection management statements in query management DRDA
	Connection management in query management DRDA
	Conversation types in query management DRDA
	Read-only connections in query management DRDA
	Status in query management DRDA

	Connection management method considerations in query management DRDA
	Using the DSQRDBCNNMTH keyword with START in query management DRDA
	Using the DSQSDBNM keyword with START in query management DRDA

	DRDA and activation groups in query management
	DRDA and activation group considerations in query management
	Default activation group in query management DRDA
	Nondefault activation group in query management DRDA
	Default and nondefault activation groups in query management DRDA
	Two nondefault activation groups in query management DRDA

	Command considerations with DRDA in query management
	SAVE DATA AS in query management DRDA
	Other commands in query management DRDA

	Commitment control in query management DRDA
	ILE C considerations in query management DRDA
	Understanding commitment control for nondefault activation groups in query management DRDA
	Understanding commitment control for default activation groups

	Remote processing and long column names in query management DRDA

	Chapter 10. Coded character set identifiers in query management
	Import CCSID processing in query management
	Export CCSID processing in query management
	Print CCSID processing in query management
	Sort sequence CCSID processing in query management
	Other considerations in query management CCSID

	Chapter 11. DB2 for i5/OS query management considerations
	Override considerations in query management
	Tables and views in query management
	Tables referred to by ERASE TABLE in query management
	Tables and views referred by SAVE DATA AS in query management

	IMPORT and EXPORT source files in query management
	Query procedures in query management

	Miscellaneous tips and techniques in query management
	Printing an object in query management
	Changing STRQMQRY defaults for QRYDFN use in query management
	Displaying information about using QRYDFN Objects in query management
	Defining queries with global variables using IBM Query for i5/OS
	Using IBM Query for i5/OS to create a QMFORM for an existing QMQRY in query management
	Displaying data from a single oversized record in query management
	Using query management or CL commands in PDM options in query management
	Creating a CL program for permanent conversion of a QRYDFN object in query management
	Querying for field values in query management
	Passing variable values to a query in query management
	Defining a column with no column heading in query management
	Using query management to format an ISQL-developed query
	Using ISQL select report processing with referential constraints in query management
	Using text insertion variables to stack captions on final summaries in query management
	Using text in combination with tabular layout in query management
	Converting a multiple-level summary-only QRYDFN in query management
	Sorting and subsetting break-level summary groups in query management
	Adding SQL function in query management
	SQL functions that can be added in query management

	Runtime environment in query management
	Limits to query management processing
	Query management command
	SQL query in query management
	Externalized query in query management
	Externalized form in query management
	Instances in query management
	Global variables in query management
	Procedure limits in query management

	Chapter 12. Using IBM Query for i5/OS definition information in query management
	QRYDFN conversion in query management
	Applying DB2 for i5/OS query management to QRYDFN objects
	QRYDFN conversion considerations in query management
	Report differences in query management
	Analyzing QRYDFN in query management
	Inspecting the output in query management
	Applying QRYDFN option guidelines in query management

	IBM Query for i5/OS and DB2 for i5/OS query management differences
	Creating DB2 for i5/OS query management objects from QRYDFN objects
	Using the STRQMQRY command instead of the RUNQRY command in query management
	Conversion details in query management

	Chapter 13. Control language interface in query management
	Creating QMQRY and QMFORM objects in query management
	Sample CL program for numeric variables in query management
	Creating QMQRY and QMFORM objects for character variables in query management
	Sample CL program for character variables in query management

	Appendix A. DBCS data in query management
	What is DBCS data in query management?
	Displayed and printed DBCS data in query management
	Data types used with DBCS data in query management

	Using DBCS data in DB2 for i5/OS query management
	Using DBCS data in input fields in query management
	Using DBCS data in queries in query management
	Using DBCS in the FORM in query management
	How data truncation is handled in query management

	Saving DBCS data in query management
	Using DBCS global variables in DB2 for i5/OS query management commands
	CL Commands

	Exporting DBCS data in query management
	Importing DBCS data in query management
	Printing DBCS reports in query management

	Appendix B. Example of DB2 for i5/OS query management interface
	Producing a report in query management
	Examples: Programs in query management
	Example: RPG program in query management
	Example: COBOL program in query management
	Query and form source in query management
	Query and form printed output in query management

	Appendix C. Use of quotation marks and apostrophes when setting global variables in query management
	Query global variable pool rules for question marks and apostrophes in query management
	CL command rules for question marks and apostrophes in query management
	Message prompt rules for question marks and apostrophes in query management
	High-level language programming rules for question marks and apostrophes in query management
	Using a query procedure rules for question marks and apostrophes in query management
	Methods for simplification of variables in query management

	Appendix D. Examples of sort sequence in query management
	Example of sort in query management
	Example of record selection in query management
	Example of report breaks in query management
	Example of grouping in query management
	Break summary use in query management

	Appendix E. Notices
	Programming interface information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

